C Programming for Arduino

Learn how to program and use Arduino boards with a series of
engaging examples, illustrating each core concept

http://www.it-ebooks.info/

C Programming for Arduino

Learn how to program and use Arduino boards
with a series of engaging examples, illustrating
each core concept

Julien Bayle

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

C Programming for Arduino

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2013
Production Reference: 1070513

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84951-758-4

www . packtpub.com

Cover Image by Asher Wishkerman (a.wishkermanempic.de)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Julien Bayle

Reviewers
Darwin Grosse

Pradumn Joshi
Phillip Mayhew
Glenn D. Reuther

Steve Spence

Acquisition Editor
Edward Gordon

Erol Staveley

Lead Technical Editor
Susmita Panda

Technical Editors
Worrell Lewis

Varun Pius Rodrigues
Lubna Shaikh

Sharvari Baet

Copy Editors
Laxmi Subramanian

Sajeev Raghavan
Insiya Morbiwala
Brandt D'mello
Aditya Nair
Alfida Paiva

Project Coordinator
Leena Purkait

Proofreaders
Claire Cresswell-Lane

Martin Diver

Indexer
Tejal R. Soni

Graphics
Ronak Dhruv

Production Coordinator
Pooja Chiplunkar

Cover Work
Pooja Chiplunkar

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Julien Bayle completed his Master's degree in Biology and Computer Sciences
in 2000. After several years working with pure IT system design, he founded
Design the Media in early 2010 in order to provide his own courses, training, and
tools for art fields. As a digital artist, he has designed some huge new media art
installations, such as the permanent exhibition of La Maison des Cinématographies
de la Méditerranée (Chateau de la Buzine) in Marseille, France, in 2011. He has
also worked as a new media technology consultant for some private and public
entities. As a live AV performer, he plays his cold electronic music right from
New York to Marseille where he actually lives. The Arduino framework is one

of his first electronic hardware studies since early 2005, and he also designed the
famous protodeck controller with various open source frameworks. As an Art and
Technology teacher also certified by Ableton in 2010, he teaches a lot of courses
related to the digital audio workstation Ableton Live, the real-time graphical
programming framework Max 6, and Processing and Arduino.

As a minimalist digital artist, he works at the crossroads between sound, visual,

and data. He explores the relationship between sounds and visuals through his
immersive AV installations, his live performances, and his released music. His work,
often described as "complex, intriguing, and relevant", tries to break classical codes
to bring his audience a new vision of our world through his pure digital and real-
time-generated stimuli.

He's deeply involved in the open source community and loves to share and
provide workshops and masterclasses online and on-site too. His personal website
ishttp://julienbayle.net.

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgement

I would like to thank my sweet wife Angela and our daughter Alice for having been
my unconditional supporters. Special thanks to our son Max, who was born between
the writing of Chapter 11 and Chapter 12!

I would also like to thank my two great friends Laurent Boghossian and Denis
Laffont because they were there for me all through the course of this huge project
with their advices, jokes, and unconditional support.

I would like to extend many thanks to two very nice persons and friends whom I
asked to review this book for me: Glenn D. Reuther and Darwin Grosse.

I thank the following great programmers who coded some libraries that have been
used in this book: Marcello Romani (the SimpleTimer library), Juan Hernandez (the
ShiftOutX library), Thomas Ouellet Fredericks (the Bounce library), Tim Barrass (the
Mozzi library), David A. Mellis from MIT (the PCM library), Michael Margolis and
Bill Perry (the glcd-arduino library), and Markku Rossi (Arduino Twitter Library
with OAuth Support).

I want to thank the creators of the following powerful frameworks used in this book
besides the Arduino framework itself: Max 6, Processing, and Fritzing.

Lastly, I'd like to hug Massimo Banzi and Arduino's project team for having initiated
this great project and inspired us so much.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Darwin Grosse is the Director of Education and Services with Cycling '74, the
developer of the Max media programming system. He is also an Adjunct Professor
at the University of Denver, and teaches sonic art, programming, and hardware
interface in the Emerging Digital Practices department.

Pradumn Joshi is currently pursuing his Bachelor's degree in Electrical
Engineering from NIT Surat. He is an avid elocutionist and debate enthusiast, and
is also interested in economics, freelance writing, and Western music. His area

of technical expertise lies in open source hardware development and embedded
systems.

Phillip Mayhew is a Bachelor of Science in Computer Science from North
Carolina State University. He is the Founder and Managing Principal of Rextency
Technologies LLC based in Statesville, North Carolina. His primary expertise is in
software application performance testing and monitoring.

www.it-ebooks.info

http://www.it-ebooks.info/

Glenn D. Reuther's own personal journey and fascination began with music
technology during the 1970s with private lessons in "Electronic Music Theory and
Acoustic Physics". He then attended Five Towns College of Music in NY and has
been a home studio operator since 1981, playing multiple instruments and designing
a few devices for his studio configuration.

Since then, he has spent several years with Grumman Aerospace as a Ground and
Flight Test Instrumentation Technician, before moving through to the IT field.
Beginning with an education in Computer Operations and Programming, he went
on to work as network and system engineer having both Microsoft and Novell
certifications. After over 10 years at the University of Virginia as Sr. Systems
Engineer, he spends much of his spare time working with the current state of music
technology. His website is http://lico.drupalgardens.com.

He is also the author of "One Complete Revelation", a photo journal of his nine-
month trek throughout Europe during the early 90s.

I would like to thank the author for his friendship, and I would
also like to thank my wonderful wife Alice and son Glenn for their
patience, understanding, and support during the editing process of
this book.

Steve Spence has been a veteran of the IT industry for more than 20 years,
specializing in network design and security. Currently he designs microcontroller-
based process controls and database-driven websites. He lives off grid and teaches
solar and wind power generation workshops. He's a former firefighter and rescue
squad member, and a current Ham Radio operator.

In the past, he's been a technical reviewer of various books on alternative fuels
(From the Fryer to the Fuel Tank, Joshua Tickell) and authored DIY alternative
energy guides.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers
and more

You might want to visit www. PacktPub. com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www . Packt Pub . com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

Eﬂ] PACKT

http://PacktLib.PacktPub.com

@

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print and bookmark content
* Ondemand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . Packt Pub. com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Preface 1
Chapter 1: Let's Plug Things 7
What is a microcontroller? 7
Presenting the big Arduino family 8
About hardware prototyping 1"
Understanding Arduino software architecture 13
Installing the Arduino development environment (IDE) 15
Installing the IDE 15
How to launch the environment? 16
What does the IDE look like? 16
Installing Arduino drivers 19
Installing drivers for Arduino Uno R3 19
Installing drivers for Arduino Duemilanove, Nano, or Diecimilla 20
What is electricity? 20
Voltage 21
Current and power 21
What are resistors, capacitors, and so on? 22
Wiring things and Fritzing 23
What is Fritzing? 25
Power supply fundamentals 27
Hello LED! 28
What do we want to do exactly? 29
How can | do that using C code? 29
Let's upload the code, at last! 34
Summary 34

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 2: First Contact with C 35
An introduction to programming 35
Different programming paradigms 37
Programming style 37

C and C++? 38
C is used everywhere 38
Arduino is programmed with C and C++ 39
The Arduino native library and other libraries 39
Discovering the Arduino native library 40
Other libraries included and not directly provided 43
Some very useful included libraries 43
Some external libraries 44
Checking all basic development steps 44
Using the serial monitor 46
Baud rate 47
Serial communication with Arduino 47
Serial monitoring 48
Making Arduino talk to us 49
Adding serial communication to Blink250ms 49
Serial functions in more detail 53
Serial.begin() 53
Serial.print() and Serial.printin() 53
Digging a bit... 53
Talking to the board from the computer 54
Summary 54
Chapter 3: C Basics — Making You Stronger 55
Approaching variables and types of data 55
What is a variable? 56
What is a type? 56
The roll over/wrap concept 58
Declaring and defining variables 58
Declaring variables 58
Defining variables 59
String 60
String definition is a construction 61
Using indexes and search inside String 61
charAt() 61
indexOf() and lastindexOf() 62
startsWith() and endsWith() 63
Concatenation, extraction, and replacement 63
Concatenation 64
Extract and replace 65

Lii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Other string functions
toCharArray()
toLowerCase() and toUpperCase()
trim()
length()

Testing variables on the board
Some explanations

The scope concept

static, volatile, and const qualifiers
static
volatile
const

Operators, operator structures, and precedence

Arithmetic operators and types
Character types
Numerical types

Condensed notations and precedence

Increment and decrement operators
Type manipulations

Choosing the right type

Implicit and explicit type conversions
Implicit type conversion
Explicit type conversion

Comparing values and Boolean operators
Comparison expressions

Combining comparisons with Boolean operators
Combining negation and comparisons

Adding conditions in the code
if and else conditional structure
switch...case...break conditional structure
Ternary operator

Making smart loops for repetitive tasks

for loop structure
Playing with increment
Using imbricated for loops or two indexes

while loop structure

do...while loop structure

Breaking the loops

Infinite loops are not your friends
Summary

68
68
68
68
68

68
71

72
73
74
75
75
76

76
76
77

77
78
79
79

80
80
82

82
82

83
84

86
86
89
91
91

91
93
93

95
96
96
97
98

[iii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 4: Improve Programming with Functions,

Math, and Timing 929
Introducing functions 929
Structure of a function 100
Creating function prototypes using the Arduino IDE 100
Header and name of functions 100
Body and statements of functions 101
Benefits of using functions 103
Easier coding and debugging 103
Better modularity helps reusability 104
Better readability 105

C standard mathematical functions and Arduino 105
Trigonometric C functions in the Arduino core 106
Some prerequisites 106
Trigonometry functions 109
Exponential functions and some others 110
Approaching calculation optimization 110
The power of the bit shift operation 111
What are bit operations? 111
Binary numeral system 111
AND, OR, XOR, and NOT operators 112

Bit shift operations 113

It is all about performance 114
The switch case labels optimization techniques 114
Optimizing the range of cases 114
Optimizing cases according to their frequency 115
The smaller the scope, the better the board 115
The Tao of returns 116
The direct returns concept 116
Use void if you don't need return 117
Secrets of lookup tables 117
Table initialization 118
Replacing pure calculation with array index operations 119
The Taylor series expansion trick 119
The Arduino core even provides pointers 120
Time measure 121
Does the Arduino board own a watch? 121
The millis() function 121
The micros() function 123
Delay concept and the program flow 124
What does the program do during the delay? 124
The polling concept — a special interrupt case 127
The interrupt handler concept 128
What is a thread? 129

A real-life polling library example 130
Summary 134

[iv]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 5: Sensing with Digital Inputs 135
Sensing the world 135
Sensors provide new capacities 136
Some types of sensors 136
Quantity is converted to data 137
Data has to be perceived 138
What does digital mean? 138
Digital and analog concepts 138
Inputs and outputs of Arduino 139
Introducing a new friend — Processing 140
Is Processing a language? 140
Let's install and launch it 141
A very familiar IDE 142
Alternative IDEs and versioning 145
Checking an example 145
Processing and Arduino 149
Pushing the button 150
What is a button, a switch? 150
Different types of switches 150

A basic circuit 150
Wires 151
The circuit in the real world 151
The pull-up and pull-down concept 153
The pseudocode 154
The code 154
Making Arduino and Processing talk 155
The communication protocol 155
The Processing code 157
The new Arduino firmware talk-ready 163
Playing with multiple buttons 165
The circuit 166
The Arduino code 168
The Processing code 170
Understanding the debounce concept 173
What? Who is bouncing? 173
How to debounce 174
Summary 177
Chapter 6: Sensing the World — Feeling with Analog Inputs 179
Sensing analog inputs and continuous values 180
How many values can we distinguish? 180
Reading analog inputs 181
The real purpose of the potentiometer 181
Changing the blinking delay of an LED with a potentiometer 182

[v]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

How to turn the Arduino into a low voltage voltmeter? 184
Introducing Max 6, the graphical programming framework 186
A brief history of Max/MSP 187
Global concepts 189
What is a graphical programming framework? 189
Max, for the playground 190
MSP, for sound 193
ditter, for visuals 194
Gen, for a new approach to code generation 196
Summarizing everything in one table 198
Installing Max 6 198
The very first patch 199
Playing sounds with the patch 201
Controlling software using hardware 203
Improving the sequencer and connecting Arduino 203
Let's connect Arduino to Max 6 203
The serial object in Max 6 204
Tracing and debugging easily in Max 6 206
Understanding Arduino messages in Max 6 206
What is really sent on the wire? 209
Extracting only the payload? 211
ASCII conversions and symbols 212
Playing with sensors 214
Measuring distances 214
Reading a datasheet? 215
Let's wire things 217
Coding the firmware 218
Reading the distance in Max 6 220
Measuring flexion 222
Resistance calculations 224
Sensing almost everything 226
Multiplexing with a CD4051 multiplexer/demultiplexer 226
Multiplexing concepts 227
Multiple multiplexing/demultiplexing techniques 227
Space-division multiplexing 228
Frequency-division multiplexing 228
Time-division multiplexing 229
The CD4051B analog multiplexer 230
What is an integrated circuit? 230
Wiring the CD4051B IC? 231
Supplying the IC 232
Analog /O series and the common O/I 232
Selecting the digital pin 233
Summary 237

[vil

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 7: Talking over Serial 239
Serial communication 239
Serial and parallel communication 240
Types and characteristics of serial communications 241
Synchronous or asynchronous 241
Duplex mode 241
Peering and bus 242
Data encoding 243
Multiple serial interfaces 244
The powerful Morse code telegraphy ancestor 244
The famous RS-232 244
The elegant 12C 246
The synchronous SPI 247
The omnipresent USB 248
Summary 251
Chapter 8: Designing Visual Output Feedback 253
Using LEDs 254
Different types of LEDs 254
Monochromatic LEDS 255
Polychromatic LEDs 255
Remembering the Hello LED example 256
Multiple monochromatic LEDs 258
Two buttons and two LEDs 258
Control and feedback coupling in interaction design 260
The coupling firmware 263
More LEDs? 265
Multiplexing LEDs 265
Connecting 75HC595 to Arduino and LEDs 266
Firmware for shift register handling 268
Global shift register programming pattern 270
Playing with chance and random seeds 271
Daisy chaining multiple 74HC595 shift registers 272
Linking multiple shift registers 273
Firmware handling two shift registers and 16 LEDs 274
Current short considerations 278
Using RGB LEDs 279
Some control concepts 279
Different types of RGB LEDs 280
Lighting an RGB LED 281
Red, Green, and Blue light components and colors 282
Multiple imbricated for() loops 283
Building LED arrays 284
A new friend named transistor 285
The Darlington transistors array, ULN2003 286

[vii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

The LED matrix 287
Cycling and POV 289
The circuit 290
The 3 x 3 LED matrix code 291
Simulating analog outputs with PWM 295
The pulse-width modulation concept 296
Dimming an LED 297

A higher resolution PWM driver component 298
Quick introduction to LCD 299
HD44780-compatible LCD display circuit 301
Displaying some random messages 302
Summary 304
Chapter 9: Making Things Move and Creating Sounds 305
Making things vibrate 306
The piezoelectric sensor 306
Wiring a vibration motor 307
Firmware generating vibrations 308
Higher current driving and transistors 309
Controlling a servo 31
When do we need servos? 311
How to control servos with Arduino 311
Wiring one servo 312
Firmware controlling one servo using the Servo library 313
Multiple servos with an external power supply 314
Three servos and an external power supply 315
Driving three servos with firmware 316
Controlling stepper motors 318
Wiring a unipolar stepper to Arduino 318
Firmware controlling the stepper motor 320
Air movement and sounds 323
What actually is sound? 323
How to describe sound 324
Microphones and speakers 325
Digital and analog domains 326
How to digitalize sound 326
How to play digital bits as sounds 328
How Arduino helps produce sounds 329
Playing basic sound bits 329
Wiring the cheapest sound circuit 330
Playing random tones 331
Improving the sound engine with Mozzi 332

[viii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Setting up a circuit and Mozzi library 333
An example sine wave 335
Oscillators 336
Wavetables 336
Frequency modulation of a sine wave 338
Adding a pot 339
Upgrading the firmware for input handling 340
Controlling the sound using envelopes and MIDI 343
An overview of MIDI 343
MIDI and OSC libraries for Arduino 344
Generating envelopes 344
Implementing envelopes and MIDI 346
Wiring a MIDI connector to Arduino 352
Playing audio files with the PCM library 355
The PCM library 355
WAV2C - converting your own sample 356
Wiring the circuit 358
Other reader libraries 359
Summary 360
Chapter 10: Some Advanced Techniques 361
Data storage with EEPROMs 361
Three native pools of memory on the
Arduino boards 361
Writing and reading with the EEPROM core library 362
External EEPROM wiring 364
Reading and writing to the EEPROM 366
Using GPS modules 368
Wiring the Parallax GPS receiver module 368
Parsing GPS location data 371
Arduino, battery, and autonomy 377
Classic cases of USB power supplying 377
Supplying external power 378
Supplying with batteries 378
Power adapter for Arduino supply 380
How to calculate current consumption 381
Drawing on gLCDs 382
Wiring the device 383
Demoing the library 384
Some useful methods' families 385
Global GLCD methods 385
Drawing methods 385
Text methods 386

[ix]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Using VGA with the Gameduino Shield 387
Summary 389
Chapter 11: Networking 391
An overview of networks 391
Overview of the OSI model 392
Protocols and communications 392
Data encapsulation and decapsulation 393
The roles of each layer 394
Physical layer 394
Data link layer 395
Network layer 396
Transport layer 396
Application/Host layers 397
Some aspects of IP addresses and ports 398
The IP address 398
The subnet 398
The communication port 399
Wiring Arduino to wired Ethernet 399
Making Processing and Arduino communicate over Ethernet 401
Basic wiring 401
Coding network connectivity implementation
in Arduino 402
Coding a Processing Applet communicating
on Ethernet 406
Some words about TCP 407
Bluetooth communications 408
Wiring the Bluetooth module 409
Coding the firmware and the Processing applet 410
Playing with Wi-Fi 412
What is Wi-Fi? 412
Infrastructure mode 413
Ad hoc mode 413
Other modes 414
The Arduino Wi-Fi shield 414
Basic Wi-Fi connection without encryption 415
Arduino Wi-Fi connection using WEP or WPA2 418
Using WEP with the Wi-Fi library 418
Using WPA2 with the Wi-Fi library 418
Arduino has a (light) web server 419
Tweeting by pushing a switch 422
An overview of APls 422
Twitter's API 422
Using the Twitter library with OAuth support 423
Grabbing credentials from Twitter 423

[x]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Coding a firmware connecting to Twitter 423
Summary 428
Chapter 12: Playing with the Max 6 Framework 429
Communicating easily with Max 6 — the [serial] object 429
The [serial] object 430
Selecting the right serial port 431
The polling system 432
Parsing and selecting data coming
from Arduino 432
The readAll firmware 433
The ReadAll Max 6 patch 434
Requesting data from Arduino 435
Parsing the received data 435
Distributing received data and other tricks 437
Creating a sound-level meter with LEDs 444
The circuit 444
The Max 6 patch for calculating sound levels 446
The firmware for reading bytes 448
The pitch shift effect controlled by hand 449
The circuit with the sensor and the firmware 449
The patch for altering the sound and parsing Arduino messages 450
Summary 452
Chapter 13: Improving your C Programming and
Creating Libraries 453
Programming libraries 453
The header file 455
The source file 457
Creating your own LED-array library 458
Wiring six LEDs to the board 458
Creating some nice light patterns 459
Designing a small LED-pattern library 461
Writing the LEDpatterns.h header 461
Writing the LEDpatterns.cpp source 462
Writing the keyword.txt file 463
Using the LEDpatterns library 464
Memory management 466
Mastering bit shifting 467
Multiplying/dividing by multiples of 2 467
Packing multiple data items into bytes 467
Turning on/off individual bits in a control and port register 468
Reprogramming the Arduino board 469

[xi]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Summary 471
Conclusion 471
About Packt Publishing 473
About Packt Open Source 473
Writing for Packt 473
Index 477

[xii]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Our futuristic world is full of smart and connected devices. Do-it-yourself
communities have always been fascinated by the fact that each one could design
and build its own smart system, dedicated or not, for specific tasks. From small
controllers switching on the lights when someone is detected to a smart sofa sending
e-mails when we sit on them, cheap electronics projects have become more and
more easy to create and, for contributing to this, we all have to thank the team, who
initiated the Arduino project around 2005 in Ivrea, Italy.

Arduino's platform is one of the most used open source hardware in the world. It
provides a powerful microcontroller on a small printed circuit board with a very

small form factor. Arduino users can download the Arduino Integrated Development
Environment (IDE) and code their own program using the C/C++ language and the
Arduino Core library that provides a lot of helpful functions and features.

With C Programming for Arduino, users will learn enough of C/C++ to be able to
design their own hardware based on Arduino. This is an all-in-one book containing
all the required theory illustrated with concrete examples. Readers will also learn
about some of the main interaction design and real-time multimedia frameworks
such as Processing and the Max 6 graphical programming framework.

C Programming for Arduino will teach you the famous "learning-by-making" way
of work that I try to follow in all of my courses from Max 6 to Processing and
Ableton Live.

Lastly, C Programming for Arduino will open new fields of knowledge by looking at
the input and output concept, communication and networking, sound synthesis, and
reactive systems design. Readers will learn the necessary skills to be able to continue
their journey by looking at the modern world differently, not only as a user but also
as a real maker.

For more details, you can visit my website for the book at
http://cprogrammingforarduino.com/ .

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

What this book covers

Chapter 1, Let's Plug Things, is your first contact with Arduino and microcontroller
programming. We will learn how to install the Arduino Integrated Development
Environment on our computer and how to wire and test the development toolchain
to prepare the further study.

Chapter 2, First Contact with C, covers the relation between the software and the
hardware. We will introduce the C language, understand how we can compile it, and
then learn how to upload our programs on the Arduino Board. We will also learn all
the steps required to transform a pure idea into firmware for Arduino.

Chapter 3, C Basics — Making You Stronger, enters directly into the C language. By
learning basics, we learn how to read and write C programs, discovering the
datatype, basic structures, and programming blocks.

Chapter 4, Improving Programming with Functions, Math, and Timing, provides the first
few keys to improve our C code, especially by using functions. We learn how to
produce reusable and efficient programming structures.

Chapter 5, Sensing with Digital Inputs, introduces digital inputs to Arduino. We will
learn how to use them and understand their inputs and outputs. We will also see
how Arduino uses electricity and pulses to communicate with everything.

Chapter 6, Sensing the World — Feeling with Analog Inputs, describes the analog inputs

of Arduino through different concrete examples and compares them to digital pins.
Max 6 frameworks are introduced in this chapter as one of the ideal companions for
Arduino.

Chapter 7, Talking over Serial, introduces the communication concept, especially
by teaching about Serial communication. We will learn how to use the Serial
communication console as a powerful debugging tool.

Chapter 8, Designing Visual Output Feedback, talks about the outputs of Arduino and
how we can use them to design visual feedback systems by using LEDs and their
systems. It introduces the powerful PWM concept and talks about LCD displays too.

Chapter 9, Making Things Move and Creating Sounds, shows how we can use the
Arduino's outputs for movement-related projects. We talk about motors and
movement and also about air vibration and sound design. We describe some basics
about digital sound, MIDI, and the OSC protocol, and have fun with a very nice
PCM library providing the feature of reading digitally encoded sound files from
Arduino itself.

[2]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 10, Some Advanced Techniques, delivers many advanced concepts, from
data storage on EEPROM units, and communication between multiple Arduino
boards, to the use of GPS modules. We will also learn how to use our Arduino
board with batteries, play with LCD displays, and use the VGA shield to plug the
microcontroller to a typical computer screen.

Chapter 11, Networking, introduces the network concepts we need to understand in
order to use our Arduino on Ethernet, wired or wireless networks. We will also use
a powerful library that provides us a way to tweet messages directly by pushing a
button on our Arduino, without using any computer.

Chapter 12, Playing with the Max 6 Framework, teaches some tips and techniques we
can use with the Max 6 graphical programming framework. We will completely
describe the use of the Serial object and how to parse and select data coming from
Arduino to the computer. We will design a small sound-level meter using both real
LEDs and Max 6 and finish by designing a Pitch shift sound effect controlled by our
own hand and a distance sensor.

Chapter 13, Improving Your C Programming and Creating Libraries, is the most advanced
chapter of the book. It describes some advanced C concepts that can be used to make
our code reusable, more efficient, and optimized, through some nice and interesting
real-world examples.

Appendix provides us with details of data types in C programming language,
operator precedence in C and C++, important Math functions, Taylor series for
calculation optimizations, an ASCII table, instructions for installing a library, and a
list of components' distributors.

Appendix can be downloaded from http://www.packtpub.com/sites/default/
files/downloads/75840S_Appendix.pdf.

What you need for this book

If you want to take benefits of each example in this book, the following software
is required:

* The Arduino environment (free, http://arduino.cc/en/main/software).
This is required for all operations related to Arduino programming.

* Fritzing (free, http://fritzing.org/download). This is an open source
environment that helps us design circuits.

* Processing (free, http://processing.org/download). This is an open
source framework for rapid prototyping using Java. Some examples use it as
a communication partner for our Arduino boards.

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

* The Max 6 framework (trial version of 30 days, http://cycling74.com/
downloads). This framework is a huge environment that is used in this
book too.

Some other libraries are also used in this book. Every time they are needed, the
example description explains where to download them from and how to install
them on our computer.

Who this book is for

This book is for people who want to master do-it-yourself electronic hardware
making with Arduino boards. It teaches everything we need to know to program
firmware using C and how to connect the Arduino to the physical world, in

great depth. From interactive-design art school students to pure hobbyists, from
interactive installation designers to people wanting to learn electronics by entering
a huge and growing community of physical computing programmers, this book will
help everyone interested in learning new ways used to design smart objects, talking
objects, efficient devices, and autonomous or connected reactive gears.

This book opens new vistas of learning-by-making, which will change readers' lives.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the
use of the include directive."

A block of code is set as follows:

[default]

exten => s,1,Dial(Zap/1]|30)
exten => s,2,Voicemail (ul00)
exten => s,102,Voicemail (b100)
exten => i,1,Voicemail (s0)

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

[default]
exten => s,1,Dial(Zap/1]|30)
exten => s,2,Voicemail (ul00)

[4]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

exten => sg,102,Voicemail (b100)

exten => 1i,1,Voicemail (s0)
Any command-line input or output is written as follows:
cp /usr/src/asterisk-addons/configs/cdr mysql.conf.sample

/etc/asterisk/cdr mysql.conf

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub. com, and
mention the book title via the subject of your message.If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, see our
author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub. com/support and register to have
the files e-mailed directly to you.

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[6]

www.it-ebooks.info

http://www.it-ebooks.info/

Let's Plug Things

Arduino is all about plugging things. We are going to do that in a couple of minutes
after we have learned a bit more about microcontrollers in general and especially the
big and amazing Arduino family. This chapter is going to teach you how to be totally
ready to code, wire, and test things with your new hardware friend. Yes, this will
happen soon, very soon; now let's dive in!

What is a microcontroller?

A microcontroller is an integrated circuit (IC) containing all main parts of a typical
computer, which are as follows:

* Processor

* Memories

* Peripherals

* Inputs and outputs

The processor is the brain, the part where all decisions are taken and which
can calculate.

Memories are often both spaces where both the core inner-self program and the user
elements are running (generally called Read Only Memory (ROM) and Random
Access Memory (RAM)).

I define peripherals by the self-peripherals contained in a global board; these are
very different types of integrated circuits with a main purpose: to support the
processor and to extend its capabilities.

www.it-ebooks.info

http://www.it-ebooks.info/

Let's Plug Things

Inputs and outputs are the ways of communication between the world (around the
microcontroller) and the microcontroller itself.

The very first single-chip processor was built and proposed by Intel Corporation in
1971 under the name Intel 4004. It was a 4-bit central processing unit (CPU).

Since the 70s, things have evolved a lot and we have a lot of processors around us.
Look around, you'll see your phone, your computer, and your screen. Processors or
microprocessors drive almost everything.

Compared to microprocessors, microcontrollers provide a way to reduce power
consumption, size, and cost. Indeed, microprocessors, even if they are faster than
processors embedded in microcontrollers, require a lot of peripherals to be able to
work. The high-level of integration provided by a microcontroller makes it the friend
of embedded systems that are car engine controller, remote controller of your TV,
desktop equipment including your nice printer, home appliances, games of children,
mobile phones, and I could continue...

There are many families of microcontrollers that I cannot write about in this book,
not to quote PICs (http://en.wikipedia.org/wiki/PIC microcontroller)
and Parallax SX microcontroller lines. I also want to quote a particular music
hardware development open source project: MIDIbox (PIC-, then STM32-based,
check http://www.ucapps.de). This is a very strong and robust framework, very
tweakable. The Protodeck controller (http://julienbayle.net/protodeck) is
based on MIDIbox.

Now that you have understood you have a whole computer in your hands, let's
specifically describe Arduino boards!

Presenting the big Arduino family

Arduino is an open source (http://en.wikipedia.org/wiki/Open_source)
singleboard-based microcontroller. It is a very popular platform forked from the
Wiring platform (http://www.wiring.org.co/) and firstly designed to popularize
the use of electronics in interaction design university students' projects.

[8]

www.it-ebooks.info

http://en.wikipedia.org/wiki/PIC_microcontroller
http://www.wiring.org.co/
http://www.wiring.org.co/
http://www.it-ebooks.info/

Chapter 1

My Arduino MEGA in my hand

It is based on the Atmel AVR processor (http://www.atmel.com/products/
microcontrollers/avr/default.aspx) and provides many inputs and outputs
in only one self-sufficient piece of hardware. The official website for the project is
http://www.arduino.cc.

The project was started in Italy in 2005 by founders Massimo Banzi and David
Cuartielles. Today it is one of the most beautiful examples of the open source
concept, brought to the hardware world and being often used only in the
software world.

We talk about Arduino family because today we can count around 15 boards
'Arduino-based', which is a funny meta-term to define different type of board
designs all made using an Atmel AVR processor. The main differences between
those boards are the:

* Type of processor

* Number of inputs and outputs

e Form factor

[9]

www.it-ebooks.info

http://www.arduino.cc
http://www.it-ebooks.info/

Let's Plug Things

Some Arduino boards are a bit more powerful, considering calculation speed,
some other have more memory, some have a lot of inputs/outputs (check the huge
Arduino Mega), some are intended to be integrated in more complex projects and
have a very small form factor with very few inputs and outputs... as [used

to tell my students each one can find his friend in the Arduino family. There are also
boards that include peripherals like Ethernet Connectors or even Bluetooth
modules, including antennas.

The magic behind this family is the fact we can use the same Integrated
Development Environment (IDE) on our computers with any of those boards
(http ://en.wikipedia.org/wiki/ Integrated_development_environment).
Some bits need to be correctly setup but this is the very same software and
language we'll use:

Qi
»

LHLe

Some notable Arduino family members: Uno R3, LilyPad, Arduino Ethernet,
Arduino Mega, Arduino Nano, Arduino Pro, and a prototyping shield

A very nice but non-exhaustive reference page about this can be found at
http://arduino.cc/en/Main/Hardware.

I especially want you to check the following models:

* Arduino Uno is the basic one with a replaceable chipset
* Arduino Mega, 2560 provides a bunch of inputs and outputs
* Arduino LilyPad, is wearable as clothes

* Arduino Nano, is very small

[10]

www.it-ebooks.info

http://arduino.cc/en/Main/Hardware
http://arduino.cc/en/Main/Hardware
http://www.it-ebooks.info/

Chapter 1

Throughout this book I'll use an Arduino Mega and Arduino Uno too; but don't
be afraid, when you've mastered Arduino programming, you'll be able to use any
of them!

About hardware prototyping

We can program and build software quite easily today using a lot of open source
frameworks for which you can find a lot of helpful communities on the Web. I'm
thinking about Processing (Java-based, check http://processing.org), and
openFrameworks (C++-based, check http://www.openframeworks.cc), but
there are many others that sometimes use very different paradigms like graphical
programming languages such as Pure Data (http://puredata.info), Max 6
(http://cycling74.com/products/max/), or vwvv (http://vvvv.org)

for Windows.

Because we, the makers, are totally involved in do-it-yourself practices, we all
want and need to build and design our own tools and it often means hardware
and electronics tools. We want to extend our computers with sensors, blinking
lights, and even create standalone gears.

Even for testing very basic things like blinking a light emitting diode (LED), it
involves many elements from supplying power to chipset low-level programming,
from resistors value calculations to voltage-driven quartz clock setup. All those steps
just gives headache to students and even motivated ones can be put off making just a
first test.

Arduino appeared and changed everything in the landscape by proposing an
inexpensive and all-included solution (we have to pay $30 for the Arduino Uno

R3), a cross-platform toolchain running on Windows, OS X, and Linux, a very easy
high-level C language and library that can also tweak the low-level bits, and a totally
extensible open source framework.

Indeed, with an all-included small and cute board, an USB cable, and your computer,
you can learn electronics, program embedded hardware using C language, and blink
your LED.

Hardware prototyping became (almost) as easy as software prototyping because of
the high level of integration between the software and the hardware provided by the
whole framework.

[11]

www.it-ebooks.info

http://processing.org
http://puredata.info
http://www.it-ebooks.info/

Let's Plug Things

One of the most important things to understand here is the prototyping cycle.

(

Writing precisely what w
want to do on a paper

i

Sketching and wiring

the circuit Q
Coding and uploading

& the firmware

Testing and fixing iteratioa
Playing and enjoying)

One easy hardware prototyping steps list

From our idea to our final render, we usually have to follow these steps.

If we want to make that LED blink, we have to define several blinking characteristics
for instance. It will help to precisely define the project, which is a key to success.

Then we'll have to sketch a schematic with our Arduino board and our LED; it will
dig the question, "How are they connected together?"

The firmware programming using C language can directly be started after we have
sketched the circuit because, as we'll see later, it is directly related to the hardware.
This is one of the strong powers of Arduino development. You remember? The board
design has been designed only to make us think about our project and not to confuse
us with very low-level abstract learning bits.

[12]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The upload step is a very important one. It can provide us a lot of information
especially in case of further troubleshooting. We'll learn that this step doesn't require
more than a couple of clicks once the board is correctly wired to our computer.

Then, the subcycle test and fix will occur. We'll learn by making, by testing, and it
means by failing too. It is an important part of the process and it will teach you a

lot. I have to confess something important here: at the time when I first began my
bonome project (http://julienbayle.net/bonome), an RGB monome clone device,
I spent two hours fixing a reverse wired LED matrix. Now, I know them very well
because I failed one day.

The last step is the coolest one. I mentioned it because we have to keep in our mind
the final target, the one that will make us happy in the end; it is a secret to succeed!

Understanding Arduino software
architecture

In order to understand how to make our nice Arduino board work exactly as we
want it to, we have to understand the global software architecture and the toolchain
that we'll be using quite soon.

Take your Arduino board in hand. You'll see a rectangle-shaped IC with the word
ATMEL written on the top; this is the processor.

This processor is the place that will contain the entire program that we'll write and
that will make things happen.

When we buy (check Appendix G, List of Components' Distributors, and this link:
http://arduino.cc/en/Main/Buy) an Arduino, the processor, also named chipset,
is preburnt. It has been programmed by careful people in order to make our life
easier. The program already contained in the chipset is called the bootloader
(http://en.wikipedia.org/wiki/Booting). Basically, it takes care of the very
first moment of awakening of the processor life when you supply it some power.
But its major role is the load of our firmware (http://en.wikipedia.org/wiki/
Firmware), I mean, our precious compiled program.

[13]

www.it-ebooks.info

http://arduino.cc/en/Main/Buy
http://www.it-ebooks.info/

Let's Plug Things

Let's have a look at a small diagram for better understanding;:

M

I

uploaded by us
via USB

premade load the firmware
Bootloader at startup

In our IDE
on our computer

complied by us

C\

on the Ardulno

running and running and
executing tasks executing tasks

C\

I like to define it by saying that the bootloader is the hardware's software and the firmware
is the user's software. Indeed, it also has some significance because memory spaces

in the chipset are not equal for write operations (within a specific hardware which
we'll discuss in the future sections of this book). Using a programmer, we cannot
overwrite the bootloader (which is safer at this point of our reading) but only the
firmware. This will be more than enough even for advanced purposed, as you'll

see all along the book.

Not all Arduino boards' bootloaders are equivalent. Indeed, they have been made
to be very specific to the hardware part, which provides us more abstraction of the
hardware; we can focus on higher levels of design because the bootloader provides
us services such as firmware upload via USB and serial monitoring.

[14]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Let's now download some required software:

e FTDIUSB drivers: http://www.ftdichip.com/Drivers/VCP.htm
* Arduino IDE: http://arduino.cc/en/Main/Software

* Processing: http://processing.org/download/

Processing is used in this book but isn't necessary to program and use
Arduino boards.

What is the Arduino's toolchain?

Usually, we call Arduino's toolchain a set of software tools required to
handle all steps from the C code we are typing in the Arduino IDE on

) our computer to the firmware uploaded on the board. Indeed, the C code

Q you type has to be prepared before the compilation step with avr-gcc and

avr-g++ compilers. Once the resulting object's files are linked by some
other programs of the toolchain, into usually only one file, you are done.
This can later be uploaded to the board. There are other ways to use
Arduino boards and we'll introduce that in the last chapter of this book.

Installing Arduino development
environment (IDE)

Let's find the compressed file downloaded from http://arduino.cc/en/Main/
Software in the previous part and let's decompress it on our computer.

Whatever the platform, the IDE works equally and even if I'll describe some specific
bits of three different platforms, I'll only describe the use of the IDE and show
screenshots from OS X.

Installing the IDE

There isn't a typical installation of the IDE because it runs into the Java Virtual
Machine. This means you only have to download it, to decompress it somewhere on
your system, and then launch it and JAVA will execute the program. It is possible to
use only the CLI (command-line interface, the famous g33ks window in which you
can type the command directly to the system) to build your binaries instead of the
graphical interface, but at this point, I don't recommend this.

[15]

www.it-ebooks.info

http://www.ftdichip.com/Drivers/VCP.htm
http://www.ftdichip.com/Drivers/VCP.htm
http://arduino.cc/en/Main/Software
http://processing.org/download/
http://www.it-ebooks.info/

Let's Plug Things

Usually, Windows and OS X come with Java installed. If that isn't the case, please
install it from the java.com website page at http://www.java.com/en/download/.

On Linux, the process really depends on the distribution you are using, so I suggest
to check the page http://www.arduino.cc/playground/Learning/Linux and if
you want to check and install all the environment and dependencies from sources,
you can also check the page http://www.arduino.cc/playground/Linux/All.

How to launch the environment?

In Windows, let's click on the . exe file included in the uncompressed folder. On OS
X, let's click on the global self-contained package with the pretty Arduino logo. On
Linux, you'll have to start the Arduino script from the GUI or by typing in the CLI.

You have to know that using the IDE you can do everything we will make in this book.

What does the IDE look like?

The IDE provides a graphical interface in which you can write your code, debug it,
compile it, and upload it, basically.

800 Blink | Arduino 1.0.1

Blink

i
Blink
Turns on an LED on for one sscond, then of f for one second, repeatedly.

This example code is in the public domain.

/¢ Pin 13 haz an LED connected on most Arduino boards.
¢ give it o name:
int led = 13;

¢ the setup routine runs once when you press reset:
void =etup) {
/¢ initialize the digital pin oz an output.
pirMode(led, OUTPUT);

A4 the loop routine runs over and over again forever:

void Loopdy {
digitalWrite{led, HIGH}; /¢ turn the LED on {HIGH iz the voltoge level)

e Loy (1888) 5 A wait for a second
digitalWritedled, LOW); ¢ turn the LED off by making the voltoge LOW
e Loy (1AEA Y A4 wait for a second

H

Arduina Uno on fdev/tty.usbmodemfd121

The famous Blink code example opened in the Arduino IDE

[16]

www.it-ebooks.info

http://www.java.com/en/download/
http://www.java.com/en/download/
http://www.arduino.cc/playground/Learning/Linux
http://www.arduino.cc/playground/Learning/Linux
http://www.arduino.cc/playground/Linux/All
http://www.arduino.cc/playground/Linux/All
http://www.it-ebooks.info/

Chapter 1

There are six icons from left to right that we have to know very well because we'll
use them every time:

Verify (check symbol): This provides code checking for errors

Upload (right-side arrow): This compiles and uploads our code to the
Arduino board

New (small blank page): This creates a new blank sketch

Open (up arrow): This opens a list of all sketches already existing in
our sketchbook

Save (down arrow): This saves our sketch in our sketchbook

Serial Monitor (small magnifying glass): This provides the serial monitoring

Each menu item in the top bar provides more options we will discover progressively
all throughout this book.

However, the Tools menu deserves closer attention:

Auto Format: This provides code formatting with correct and
standard indentations

Archive Sketch: This compresses the whole current sketch with all files
Board: This provides a list of all boards supported
Serial Port: This provides a list of all serial devices on the system

Programmer: This provides a list of all programmer devices supported
and used in case of total reprogramming of the AVR chipset

[17]

www.it-ebooks.info

http://www.it-ebooks.info/

Let's Plug Things

* Burn Bootloader: This is the option used when you want to overwrite (or
even write) a new bootloader on your board.

®& Arduino File Edit Sketch JRCTI0N Help

800 f Auto Format HT
Archive Sketch

Fix Encoding & Reload
Serial Monitor O#M

Blink

[+ Arduino Uno

?Llﬂl,:'; o e LED on for one second, then o Serial Port Arduino Duemilanove w/ ATmega328

Arduino Diecimila or Duemilanove w/ ATmegal68

This exanple code is in the public domair Programmer Arduino Nano w/ ATmega328

“ Burn Bootloader .~ Arduino Nano w/ ATmegal68
/7 Pin 13 hos an LED connected on most Arduino boards. Arduino Mega 2560 or Mega ADK
’;;tgil;s ltlg_m"““ Arduino Mega (ATmegal280)

! Arduino Leonardo

/4 the setup routing runs once when you press reset: Arduino Mini w/ ATmega328
void sstun(y { Arduino Mini w/ ATmegal68

A4 initiolize the digital pin oz an output. .
pirtode(led, OUTPUT); Arduino Ethernet

} Arduino Fio

A/ the loop routine runs over and over again forewver: Arduino BT W’{ ATmega?,EB
void Loop() { Arduino BT w/ ATmegal68

gi?itﬂgééga(ted, HIGH}; ;; tux.': :he LED on gHIGH iz the voltoge level) LilyPad Arduino w/ ATmega328

e lay H wat oY 4 Secon . .

digitalirite(led, LOW); ¢/ turn the LED off by making the voltage LOW '—"VP'?d Arduino w/ ATmegalGS

de Loy (1888Y; A4 wait for a second Arduino Pro or Pro Mini (5V, 16 MHz) w/ ATmega328

Arduino Pro or Pro Mini (5V, 16 MHz) w/ ATmegal68
Arduino Pro or Pro Mini (3.3V, 8 MHz) w/ ATmega328
Arduino Pro or Pro Mini (3.3V, 8 MHz) w/ ATmegal68
Arduino NG or older w/ ATmegal68

Arduino NG or older w/ ATmega8

Arduino Uno on /dev/tty.usbmodemfd121
The Tools menu

The preferences dialog is also a part we have to learn about right now. As usual,

the preferences dialog is a place where we don't really need to go often but only for
changing global parameters of the IDE. You can choose the sketchbook location and
the Editor language in this dialog. You can also change a couple of bits like automatic
check-up of IDE updates at start up or Editor font size.

The sketchbook concept will make our life easier. Indeed, the sketchbook is a folder
where, basically, all your sketches will go. On my personal point of view, it is very
precious to use it like this because it really organizes things for you and you can
retrieve your pieces of code easier. Follow me there; you'll thank me later.

When we start a sketch from scratch, we basically type the code, verify it, upload it,
and save it. By saving it, the first time, the IDE creates a folder in which it will put all
the files related to our current sketch. By clicking on the sketch file inside this folder,
the Arduino IDE will open and the related code will be displayed in the edit/typing
part of the window.

[18]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

We are almost done!

Let's install the drivers of the Arduino USB interface on our system.

Installing Arduino drivers

Arduino boards provide an USB interface. Before we plug the USB cable and link the
board to our computer, we have to install specific drivers in the latter.

There is a huge difference between Windows and OS X here; basically, OS X doesn't
require any specific drivers for Arduino Uno or even Mega 2560. If you are using
older boards, you'd have to download the latest version of drivers on the FTDI
website, double-click the package, then follow instructions, and finally, restart

your computer.

Let's describe how it works on Windows-based systems, I mean, Windows 7, Vista,
and XP.

Installing drivers for Arduino Uno R3

It is important to follow the steps mentioned next to be able to use the Arduino
Uno R3 and some other boards. Please check the Arduino website for up-to-date
references.

1. Plug your board in and wait for Windows to begin the driver installation
process. After a few moments, the process fails.
Click on the Start menu, and open Control Panel.

In Control Panel, navigate to System and Security. Next, click on System.
Once the System window is up, open Device Manager.

4. Look under Ports (COM & LPT). Check the open port named Arduino UNO
(COMXxx).

5. Right-click on the Arduino UNO (COMXxx) port and choose the Update
Driver Software option.

Next, choose the Browse my computer for driver software option.

Finally, navigate and select the Uno's driver file, named ArduinoUNO. inf,
located in the Drivers folder of the Arduino software download (be careful:
not the FTDI USB Drivers subdirectory).

8. Windows will finish the driver installation from there and everything will
be fine.

[19]

www.it-ebooks.info

http://www.it-ebooks.info/

Let's Plug Things

Installing drivers for Arduino Duemilanove,
Nano, or Diecimilla

When you connect the board, Windows should initiate the driver installation process
(if you haven't used the computer with an Arduino board before).

On Windows Vista, the driver should be automatically downloaded and installed.
(Really, it works!)

On Windows XP, the Add New Hardware wizard will open:

1. When asked Can Windows connect to Windows Update to search for
software? select No, not this time. Click on Next.

Select Install from a list or specified location (Advanced) and click on Next.

Make sure that Search for the best driver in these locations is checked,
uncheck Search removable media, check Include this location in the search,
and browse to the drivers/FTDI USB Drivers directory of the Arduino
distribution. (The latest version of the drivers can be found on the FTDI
website.) Click on Next.

4. The wizard will search for the driver and then tell you that a USB Serial
Converter was found. Click on Finish.

5. The new hardware wizard will appear again. Go through the same steps and
select the same options and location to search. This time, a USB Serial Port
will be found.

You can check that the drivers have been installed by opening Windows Device
Manager (in the Hardware tab of the System control panel). Look for a USB Serial
Port in the Ports section; that's the Arduino board.

Now, our computer can recognize our Arduino board. Let's move to the physical
world a bit to join together the tangible and intangible worlds.

What is electricity?

Arduino is all about electronic, and electronic refers to electricity. This may be your
first dive into this amazing universe, made of wires and voltages, including blinking
LEDs and signals. I'm defining several very useful notions in this part; you can
consider turning down the corner of this page and to come back as often as you need.

Here, I'm using the usual analogy of water. Basically, wires are pipes and water is
electricity itself.

[20]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Voltage

Voltage is a potential difference. Basically, this difference is created and maintained
by a generator. This value is expressed in Volt units (the symbol is V).

The direct analogy with hydraulic systems compare the voltage to the difference
of pressure of water in two points of a pipe. The higher the pressure, the faster the
water moves, for a constant diameter of pipe of course.

We'll deal with low voltage all throughout this book, which means nothing more
than 5 V. Very quickly, we'll use 12 V to supply motors and I'll precise that each
time we do.

When you switch on the generator of closed circuits, it produces and keeps this
potential difference. Voltage is a difference and has to be measured between two
points on a circuit. We use voltmeters to measure the voltage.

Current and power

Current can be compared to the hydraulic volume flow rate, which is the volumetric
quantity of flowing water over a time interval.

The current value is expressed in Amperes (the symbol is A). The higher the current,
the higher will be the quantity of electricity moving.

A flow rate doesn't require two points to be measured as a difference of pressure;
we only need one point of the circuit to make our measurement with an equipment
named Ampere meter.

In all of our applications, we'll deal with direct current (DC), which is different from
alternative current (AC).

Power is a specific notion, which is expressed in Watt (the symbol is W).
Following is a mathematical relationship between voltage, current, and power:
P=VxI

where, P is the power in Watt, V the voltage in V, and I the current in Amperes.

Are you already feeling better? This analogy has to be understood as a proper
analogy, but it really helps to understand what we'll make a bit later.

[21]

www.it-ebooks.info

http://www.it-ebooks.info/

Let's Plug Things

And what are resistors, capacitors,
and so on?

Following the same analogy, resistors are small components that slow down the flow
of current. They are more resistive than any piece of wire you can use; they generally
dissipate it as heat. They are two passive terminal components and aren't polarized,
which means you can wire them in both directions.

Resistors are defined by their electrical resistance expressed in Ohms (the symbol is Q).

There is a direct mathematical relation between voltage measured at the resistor
sides, current, and resistance known as the Ohm's law:

R=V/I

where R the electrical resistance in Ohms, V the voltage in Volts, and I the current
in Amperes.

For a constant value of voltage, if the resistance is high, the current is low and
vice-versa. It is important to have that in mind.

On each resistor, there is a color code showing the resistance value.

There are many types of resistors. Some have a constant resistance, some others
can provide different resistance values depending on physical parameters such as
temperature, or light intensity for instance.

A potentiometer is a variable resistor. You move a slider or rotate a knob and the
resistance changes. I guess you begin to understand my point...

A capacitor (or condenser) is another type of component used very often. The direct
analogy is the rubber membrane put in the pipe: no water can pass through it, but
water can move by stretching it.

They are also passive two-terminal components but can be polarized. Usually,
small capacitors aren't.

We usually are saying that capacitors store potential energy by charging. Indeed, the
rubber membrane itself stores energy while you stretch it; try to release the stretched
membrane, it will find its first position.

Capacitance is the value defining each capacitor. It is expressed in Farads (the
symbol is F).

[22]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

We'll stop here about capacitance calculations because it involves advanced
mathematics which isn't the purpose of this book. By the way, keep in mind the
higher the capacitance, more will be the potential the capacitor can store.

A diode is again a two-terminal passive component but is polarized. It lets the
current pass through it only in one direction and stop it in the other. We'll see
that even in the case of direct current, it can help and make our circuits safer in
some cases.

LEDs are a specific type of diode. While the current passes through them in the
correct direction, they glow. This is a nice property we'll use to check if our circuit
is correctly closed in a few minutes.

Transistor is the last item I'm describing here because it is a bit more complex, but
we cannot talk about electronics without quoting it.

Transistors are semiconductor devices that can amplify and switch electronics signals
and power, depending on how they are used. They are three-terminal components.
This is the key active component of almost all modern electronics around us.
Microprocessors are made of transistors and they can even contain more than 1
billion of them.

Transistors in the Arduino world are often used to drive high current, which couldn't
pass through the Arduino board itself without burning it. In that case, we basically
use them as analogue switches. When we need them to close a circuit of high
currents to drive a motor for instance, we just drive one of their three terminals

with a 5 V coming from the Arduino and the high current flows through it as if it
had closed a circuit. In that case, it extends the possibilities of the Arduino board,
making us able to drive higher currents with our little piece of hardware.

Wiring things and Fritzing
With the previous analogy, we can understand well that a circuit needs to be closed
in order to let the current flow.

Circuits are made with wires, which are basically conductors. A conductor is a
matter with a resistance near to zero; it lets the current flow easily. Metals are
usually good conductors. We often use copper wires.

In order to keep our wiring operations easy, we often use pins and headers. This is a
nice way to connect things without using a soldering iron each time!

[23]

www.it-ebooks.info

http://www.it-ebooks.info/

Let's Plug Things

By the way, there are many ways to wire different components together.
For our prototyping purpose, we won't design printed circuit board or
even use our soldering iron; we'll use breadboards!

L . s 80w L L I L L
- - - - - - - - - -
L T L B B B D B B N D R B N R
& & & ® & §F ¥ % F 8 F F F F F F F F OB OF B F B F R E RO
L L U D R B L D L DL L L I
& & & ® & §F ¥ % F 8 F F F F F F F F OB OF B F B F R E RO
I I A O I O I B T I B I O O
8 & & ® & §F ¥ 8§ F 8 F F F F F F OF F OB T B F B F R E OO
I I I A I A I B I B O B R
& & & ® & §F ¥ 8§ F 8 F F F F F F F F S T R F B F R O
I I I A I A I B I B O B R
T % 9§ ¥ % F F F 9§ F 8 F R OF OF OF F R R R R R YR OERE R R RN
(o % v & » R I R D
" " " "W " " 9 " " 9" "9 " T " "9 I.I.Ij

A breadboard with its buses blue and red and its numerous perforations
Breadboards are the way to rapid prototyping and this is the way to go here.

Basically, breadboards consists of a piece of plastic with many perforations
in which there are small pieces of conductors allowing to connect wires and
components' leads inside.

The distance between two perforations is 2.54 mm (equal to 0.1") that is a standard;
for instance, dual in-line package integrated circuits' leads are all separated by this
particular distance and thus, you can even put IC on breadboards.

As we saw on the previous screenshot, there are buses and terminals strips.

Buses are series of five perforations in the central part and put in column for
which the underlying conductors are connected. I have surrounded one bus
with a green stroke.

Terminals are special buses usually used for power supplying the circuit and
appear in between blue and red lines. Usually, we use blue for ground lines and
red for voltage source (5 V or 3.3 V in some cases). A whole line of terminals has its
perforations all connected, providing voltage source and ground easily available
on all the breadboard without having to use a lot of connection to the Arduino.

I surrounded 2 of the 4 terminals with red and blue strokes.

Breadboards provide one of the easiest ways of prototyping without soldering.
It also means you can use and reuse your breadboards throughout the years!

[24]

www.it-ebooks.info

http://fritzing.org
http://www.it-ebooks.info/

Chapter 1

What is Fritzing?

I discovered the open source Fritzing project (http://fritzing.org) whenI
needed a tool to make my first master classes slideshows schematic around the
Protodeck controller (http://julienbayle.net/protodeck) I built in 2010.

Fritzing is defined as an open source initiative to support designers, artists, researchers and
hobbyists to work creatively with interactive electronics. It sounds as if it had been made
for us, doesn't it?

You can find the Fritzing's latest versions at http://fritzing.org/download/.

Basically, with Fritzing, you can design and sketch electronic circuits. Because there
are many representations of electronic circuits, this precious tool provides two of the
classic ones and a PCB design tool too.

Considering the first practical work we are going to do, you have to take your
breadboard, your Arduino, and wire the lead and the resistor exactly as it is
shown in the next screenshot:

-FKaFa] D 978-1-840517-58-4_1_BlinkingLED.f22 - Fritzing - [Breadboard View]

- LR U L R «- e PARTS

o) | Core Parts. i
Bk

L N ‘J

R]

--------------- T T a

s ss s s s s s EE AT I

R T e A T

I T R] i

LR L R 5 1|

revsvevrevevernews wmllipsrvrevereorn d

R
S e s e e we e

—elk
= | (=] Rw

INSPECTOR

Togale Switch

Properties

=1 Arduin 2 E ﬂ I:-:E
B

| [

ain

i fritzing care
OWER amaocin @

st ¥
Gnd Vin 01 2348 ennn.
e

—
. 1 o 0 of 3 nets routed - 3 connections still to be routed

- P
Share Add anote Hotse Hip

psrrin 200% @ <4 o

The breadboard view showing our first circuit

[25]

www.it-ebooks.info

http://julienbayle.net/protodeck
http://julienbayle.net/protodeck
http://fritzing.org/download/
http://www.it-ebooks.info/

Let's Plug Things

The breadboard view is the one that looks the most like what we have in front of us
on the table. You represent all wires and you connect a virtual breadboard to your
Arduino and directly plug components.

The magic lies in the fact that the schematic is automatically build while you

are sketching in the breadboard view. And it works both ways! You can make a
schematic, and Fritzing connect components in the breadboard view. Of course,
you'd probably have to place the part in a more convenient or aesthetical way, but
it works perfectly fine. Especially, the Autorouter helps you with making all wires
more linear and simple.

In the next screenshot, you can see the same circuit as before, but shown in the
schematic view:

® 00 |J 978-1-849517-58-4_1 BlinkingLED.fzz - Fritzing - [Schematic View]
Arduina1 Breadboard PCB
| I | PARTS
Core Parts =
3V3 5V Vin D13 -
Power
—] RST D12 frm ﬁ i
M ~
— AREF D1t
. —--
— 10Rrer Arduino Dio ==L A ! n
— N/C Do MM m
D8 —
= Input
2 D7
= R1
S e L | 2200 a 1 * —
=
(=% >
£ P S
3 05 1 x‘_j T .
— AD =20, T -
i el AOD 4
—_ A1 D3
= INSPECTOR
o zé’ P lﬁtEeElr:B:!S |
a TH nm
— A3 = s AL
ju— E- Do ol \
-1 A5 SCL e
SDA
GND
‘ .’ @ Routing completed
P
Share Add a note Rotate‘r Flip‘r Autoroute
s.0671.020in 100 % @ “§P Y

The schematic view representing the circuit diagram

[26]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

There are a lot of components already designed especially for Fritzing and
you can even create yours quite easily. The page to visit for this purpose is
http://fritzing.org/parts/.

The native library contains all parts required in all schematics of this book from all
Arduino boards, to any discrete components and IC too. Indeed, all schematics of
this book have been made using Fritzing!

Now that you know how to wire things without any soldering iron, and how to
quietly sketch and check things on your computer before you do it for real on your
desktop, let's learn a bit about power supply.

Power supply fundamentals

We learned a bit more about electricity before, but how can I supply all my circuits in
real life?

Arduino boards can be supplied in three different ways:

* By our computer via the USB cable (5 V is provided)
* By a battery or a direct external Power Supply Unit (PSU) / Adapter
* By attaching a regulated 5 V to the +5 V pin

The USB cable contains four cables: two for data communication purpose and two
for power supply. Those latter are basically used to supply Arduino when you are
connecting it to the computer via USB.

USB is a special communication bus that provides 5 V but no more than 500 mA.
(0.5 A) It means we have to use another supply source in special projects where
we need a lot of LED, motors, and other devices that drive a lot of current.

What adapter can I use with my Arduino?

‘ Arduino Uno and Mega can be directly supplied by DC Adapter but
*Q this one has to respect some characteristics:

* The output voltage should be between 9 V and 12 V
e Itshould be able to drive at least 250 mA of current
* Itmust have a 2.1 mm power plug with center positive

Usually, if you ask yourself about the fact whether to use an adapter or not, it means
you need more current than the USB's 500 mA (Practically, ask yourself this question
whether you need around 400 mA).

[27]

www.it-ebooks.info

http://fritzing.org/parts/
http://www.it-ebooks.info/

Let's Plug Things

Using USB or the 2.1 mm power plug with an adapter are the safest ways to use
Arduino boards for many reasons. The main one is the fact that those two sources
are (hopefully) clean, which means they deliver a regulated voltage.

However, you have to change something on the board if you want to use one or the
other source: a jumper has to be moved to the right position:

On the left, the jumper is set to USB power supply and on the right, it is set to external power supply

Usually, an idle Arduino board drains around 100 mA and, except in specified cases
(see Chapter 9, Making Things Move and Creating Sounds), we'll use the USB way of
supply. This is what you have to do now: plug in the USB cable both in the Arduino
and your computer.

Launch the Arduino IDE too, and let's move further to the hardware Hello World of
our system, I call that the Hello LED!

Hello LED!

If your Arduino doesn't contain any firmware, the LED probably does nothing.
If you check the built-in LED on the Arduino board itself, that one should blink.

Let's take the control over our external cute LED plugged in the breadboard
right now.

[28]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

What do we want to do exactly?

If you remember correctly, this is the first question we have to ask. Of course, we
bypassed this step a bit especially about the hardware part because I had to explain
things while you were wiring, but let's continue the prototyping process explained
in part by checking the code and uploading it.

We want to make our LED blink. But what blink speed ? How much time? Let's say
we want to make it blink every 250 ms with a one second pause between the blinks.
And we want to do that infinitely.

If you check the schematic, you can understand that the LED is put between the
ground, and the line to the digital output pin number 8.

There is a resistor and you now know that it can consume a bit of energy by resisting
to the current flowing to the LED. We can say the resistor protects our LED.

In order to make the LED light up, we have to create a flow of current. Sending +5
V to the digital output number 8 can do this. That way, there will be a potential
difference at the two leads of the LED, driving it to be lighted. But the digital output
shouldn't be at +5 V at each time. We have to control the moment when it will
provide this voltage. Still okay?

Let's summarize what we have to do:

1. Put the 5V to the digital output 8 during 250ms.
2. Stop to drive the digital output 8 during 1s.

3. Restart this every time the Arduino is powered

How can | do that using C code?

If you followed the previous page correctly, you already have your Arduino board
wired to the computer via your USB cable on one side, and wired to the breadboard
on the other side.

Now, launch your Arduino IDE.

[29]

www.it-ebooks.info

http://www.it-ebooks.info/

Let's Plug Things

Start with a new blank page

If you already tested your IDE by loading some examples, or if you already wrote
some piece of code, you have to click on the New icon in order to load a blank page,
ready to host our Blink250ms code:

800 sketch_jul05b | Arduino 1.0.1

sketch_juldSb

Arduino Uno on /dev/tty.usbmodemfd121

A nice and attractive blank page

Setting up the environment according the board we are
using

The IDE has to know with which board it will have to communicate. We will do it in
the following steps:

1. Go to the Tools menu and choose the correct board. The first one is
Arduino Uno:

[30]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

® Arduino File FEdit Sketch [N Help

Auto Format T
Archive Sketch
Fix Encoding & Reload

Serial Monitor T 3EM ;

» Arduino Uno
Serial Port Arduino Duemilanove w/ ATmega328
f Arduino Diecimila or Duemilanove w/ ATmegal68
e Juose Programmer Arduino Nano w/ ATmega328
Burn Bootloader . Arduino Nano w/ ATmegal68

Arduino Mega 2560 or Mega ADK
Arduino Mega (ATmegal280)
Arduino Leonardo
Arduino Mini w/ ATmega328
Arduino Mini w/ ATmegal68
Arduino Ethernet
Arduino Fio
Arduino BT w/ ATmega328
Arduino BT w/ ATmegal68
LilyPad Arduino w/ ATmega328
LilyPad Arduino w/ ATmegalG8
Arduino Pro or Pro Mini (5V, 16 MHz) w/ ATmega328
Arduino Pro or Pro Mini (5V, 16 MHz) w/ ATmegal68
Arduino Pro or Pro Mini (3.3V, 8 MHz) w/ ATmega328
Arduino Pro or Pro Mini (3.3V, 8 MHz) w/ ATmegal68
Arduino NG or older w/ ATmegal68
Arduino NG or older w/ ATmega8

Arduino Uno on /dev/tty.usbmodemfd121

Choose the board you are using

2. Once we have done that, we have to choose the correct serial port. Go to the
Tools menu again and choose the correct serial port:

° OnOS X, the correct one begins with /dev/tty.usbmodem for both
Uno and Mega 2560 and with /dev/tty.usbserial for older boards.

° On Windows, the correct port is usually COM3 (COM1 and COM2
are often reserved by the operating system). By the way, it can also
be COM4, COMS5, or whatever else. To be sure, please check the
device manager.

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Let's Plug Things

° On Linux, the port is usually /dev/ttyUSBO:

® Arduino File Edit Sketch Jaelcl Help

Auto Format w/T
Archive Sketch

Fix Encoding & Reload
Serial Monitor T 8M

Board
Serial Port /dev/tty.usbserial-m40h-001
P Jdev/cu.usbserial-m40h-001
seetenuse Programmer /dev/tty.Bluetooth-Modem
Burn Bootloader J/dev/cu.Bluetooth-Modem
/dev/tty.iPhonedejulien-Wireless
Jdev/cu.iPhonedejulien-Wireless
/dev/tty.Bluetooth-PDA-Sync
/dev/cu.Bluetooth-PDA-Sync

Arduino Uno on /dev/tty.usbmodemfd121

Choose the serial port corresponding to your board

Now, our IDE can talk to our board. Let's push the code now.

Let's write the code
The following is the complete code. You can find it in the zip file in the Chaptero1/
Blink250ms/ folder:

Downloading the example code

purchased from your account at http: //www.packtpub. com. If you
purchased this book elsewhere, you can visit http: //www.packtpub.
com/support and register to have the files e-mailed directly to you.

.“Q You can download the example code files for all Packt books you have

/*
Blink250ms Program

Turns a LED connected to digital pin 8 on for 250ms, then off for
ls, infinitely.

[32]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Written by Julien Bayle, this example code is Creative Commons CC-
BY-SA
*/

// Pin 8 is the one connected to our LED
int ledPin = 8; // ledPin is an integer variable
initialized at 8

/] --------- the setup routine runs once when you power up the board
or push the reset switch
void setup() {

pinMode (ledPin, OUTPUT) ; // initialize the digital pin as an

output because we want it to source a current

}

/] —---=--=--- the loop routine runs forever
void loop() {
digitalWrite (ledPin, HIGH) ; // turn the LED on (HIGH is a constant
meaning a 5V voltage)
delay (250) ; // wait for 250ms in the current state
digitalWrite (ledPin, LOW) ; // turn the LED off (LOW is a constant
meaning a 5V voltage)
delay (1000) ; // wait for 1ls in the current state

}

Let's comment it a bit. Indeed, we'll learn how to code our own C code in the next
chapter, then I'll only describe this one and give you some small tips.

First, everything between /* and */, and everything after // are just comments. The
first form is used for comments more than one line at a time, and the other one is for
one line commenting only. You can write any comments like that and they won't be
considered by the compiler at all. I strongly advice you to comment your code; this is
another key to succeed.

Then, the first part of the code contains one variable declaration and initialization:
int ledPin = 8;
Then, we can see two particular structures between curly braces:

void setup() ({
pinMode (ledPin, OUTPUT) ;
}

void loop () {
digitalWrite (ledPin, HIGH) ;
delay (250) ;
digitalWrite (ledPin, LOW) ;
delay (1000) ;

[33]

www.it-ebooks.info

http://www.it-ebooks.info/

Let's Plug Things

The first one (setup ()) is a function that is executed only one time when the
Arduino board is started (or reseted); this is the place where we are telling the board
that the pin where the LED is connected is an output, that is, this pin will have to
drive current while activated.

The second one (1oop ()) is a function executed infinitely when the Arduino board is
supplied. This is the main part of our code in which we can find the steps we wanted
to light up the LED for 250 ms and switch off the LED for 1 s, repeatedly.

Let's upload the code, at last!

If you correctly followed and manipulated the hardware and the IDE as explained
before, we are now ready to upload the code on the board.

Just click on the Upload button in the IDE. You'll see the TX and RX LEDs blinking a
bit and ... your LED on your breadboard should blink as expected. This is our very
first HELLO LED! example and I hope you liked it.

If you want to tweak the code a bit, you can replace the following line:
delay (1000) ;

With the following line, for instance:
delay (100) ;

Now upload this new code again and see what happens.

Summary

In this chapter itself, we learnt a bit about Arduino and microcontrollers, and
about electricity too. That will help us in the next chapters in which we will talk
a lot about circuits.

We also installed the IDE that we will use every time while programming Arduino
boards and we even tested the first piece of code. We are now able to continue our
travel by learning more about the C language itself.

[34]

www.it-ebooks.info

http://www.it-ebooks.info/

First Contact with C

In my life as a programmer, I encountered a lot of compiler-based as well as
scripting languages. One of the lowest common denominators has always been
the C language.

In our case, this is embedded system programming, which is another name for
hardware programming; this first statement is also true.

Let's check what C programming really is and let's enter into a new world, that is,
the realm of Arduino programming. We'll also use a very necessary feature called
serial monitoring. This will help us a lot in our C learning, and you'll understand
that this feature is also used in real-life projects.

An introduction to programming

The first question is, what is a program?

A program is text that you write using a programming language that contains
behaviors that you need a processor to acquire. It basically creates a way of handling
inputs and producing outputs according to these behaviors.

According to Wikipedia (http://en.wikipedia.org/wiki/Computer
programming):

Programming is the process of designing, writing, testing, debugging and
maintaining the source code of computer programs.

Of course, this definition is very simple and it also applies to microcontrollers, as we
already know that the latter are basically a type of computers.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Computer_programming
http://www.it-ebooks.info/

First Contact with C

Designing a program is the fact you have to think about first, before you begin coding
it. It generally involves writing, drawing, and making schematics of all the actions
you want your processor to make for you. Sometimes, it also implies to write

what we call pseudocode. I hope you remember that this is what we created in the
previous chapter when we wanted to define precisely all the steps of our desired
LED behavior.

I don't agree with a lot of people calling it pseudocode because it is actually more of a
real code.

What we call pseudocode is something that helps a lot because it is human-readable,
made of clear sentences, and is used to think and illustrate better our purpose, which
is the key to success.

An example of my firmware pseudocode's definition could be as follows:

1. Measure the current thermic sensor value.
2. Check if the temperature is greater than 30° C and make a sound if it is.
3. If not, light the blue LED.

4. And make those previous steps permanent in a loop.

Writing a program is typically what converts the pseudocode into real and well-
formed code. It involves having knowledge of programming languages because it is
the step when you really write the program. This is what we'll learn in a moment.

Testing is the obvious step when you run the program after you made some
modifications to the code. It is an exciting moment when you also are a bit afraid of
bugs, those annoying things that make running your program absolutely different
from what you expected at first.

Debugging is a very important step when you are trying to find out why that program
doesn't work well as expected. You are tracking typo errors, logic discrepancies,

and global program architecture problems. You'll need to monitor things and often
modify your program a bit in order to precisely trace how it works.

Maintaining the source code is the part of the program's life that helps to avoid
obsolescence.

The program is working and you improve it progressively; you make it up-to-date
considering hardware evolutions, and sometimes, you debug it because the user has
this still undiscovered bug. This step increases the life duration of your program.

[36]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Different programming paradigms

A paradigm is a manner of describing something. It can either be a representation or
a theoretical model of something.

Applied to programming, a programming paradigm is a fundamental style of computer
programming.

The following are four main programming paradigms:

* Object-oriented
* Imperative
* Functional

* Logic programming
Some languages follow not one but multiple paradigms.

It is not the purpose of this book to have a debate around those, but I would add one,
which can be a combination of these and which also describes a particular concept:
visual programming. We'll discover one of the most powerful frameworks in Chapter
6, Sensing the World — Feeling with Analog Inputs, namely the Max 6 framework
(formerly named Max/MSP).

Programming style

There is no scientific or universal way to define what is the absolute best style of
programming. However, I can quote six items that can help to understand what we'll
try to do together all along this book in order to make good programs. We'll aim for
the following:

* Reliability: This enables a code to handle its own generated errors
while running

* Solidity: This provides a frame to anticipate problems on the user side
(wrong inputs)

* Ergonomics: This helps to intuitively be able to use it with ease

* Portability: This is the designing of a program for a wide range of platforms

* Maintainability: This is the ease of modifying it even if you didn't code
it yourself

* Efficiency: This indicates that a program runs very smoothly without
consuming a lot of resources

Of course, we'll come back to them in the examples of this book, and I'm sure you'll
improve your style progressively.

[37]

www.it-ebooks.info

http://www.it-ebooks.info/

First Contact with C

C and C++?

Dennis Ritchie (http://en.wikipedia.org/wiki/Dennis_Ritchie) at Bell Labs
developed the C programming language from 1969 to 1973. It is often defined as

a general-purpose programming language and is indeed one of the most used
languages of all times. It had been used initially to design the Unix operating
system (http://en.wikipedia.org/wiki/Unix) that had numerous requirements,
especially high performance.

It has influenced a lot of very well known and used languages such as C++,
Objective-C, Java, JavaScript, Perl, PHP, and many others.

C is to both imperative and structured. It is very appropriate for both 8-bit and 64-bit
processors, for systems having not only several bytes of memory but also terabytes
too, and also for huge projects involving huge teams, to the smallest of projects with
a single developer.

Yes, we are going to learn a language that will open your mind to global and
universal programming concepts!

C is used everywhere

Indeed, the C language provides a lot of advantages. They are as follows:

* Itissmall and easy to learn.

* [tis processor-independent because compilers exist for almost all processors
in the world. This independence provides something very useful to
programmers: they can focus on algorithms and the application levels of
their job instead of thinking about the hardware level at each row of code.

» Itisawvery "low-level" high-level language.

This is its main strength. Dennis M. Ritchie, in his book The C Programming
Language written with Brian W. Kernighan commented on C as:

C is a relatively "low level" language. This characterization is not pejorative; it
simply means that C deals with the same sort of objects that most computers do.
These may be combined and moved about with the arithmetic and logical operators
implemented by real machines.

Today, this is the only language that allows interacting with the underlying
hardware engine so easily and this is the reason why the Arduino toolchain is based
on C.

[38]

www.it-ebooks.info

http://en.wikipedia.org/wiki/Dennis_Ritchie
http://en.wikipedia.org/wiki/Dennis_Ritchie
http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/Unix
http://www.it-ebooks.info/

Chapter 2

Arduino is programmed with C and C++

C++ can be considered as a superset of C. It means C++ brings new concepts

and elements to C. Basically, C++ can be defined as C with object-oriented
implementation (http://en.wikipedia.org/wiki/Object-oriented_
programming), which is a higher-level feature. This is a very nice feature that brings
and provides new ways of design.

We'll enter together into this concept a bit later in this book but basically, in object-
oriented programs, you define structures called classes that are a kind of a model,

and you create objects called instances of those classes, which have their own life at
runtime and which respect and inherit the structure of the class from which they came.

Object-oriented programming (OOP) provides four properties that are very useful
and interesting;:

* Inheritance (classes can inherit attributes and behaviors from their
parent classes)

* Data encapsulation (each instance retains its data and functions)
* Object identity (each instance is an individual)
* Polymorphism (each behavior can depend on the context)

In OOP, we define classes first and then we use specific functions called constructors
to create instances of those classes. Imagine that a class is a map of a type of house,
and the instances are all the houses built according to the map.

Almost all Arduino libraries are made using C++ in order to be easily reusable,
which is one of the most important qualities in programming.

The Arduino native library and other
libraries

A programming library is a collection of resources that are available for use
by programs.

They can include different types of things, such as the following:

* Configuration data

* Help and documentation resources

* Subroutines and reusable part of code
* C(lasses

* Type definitions

[39]

www.it-ebooks.info

http://www.it-ebooks.info/

First Contact with C

I like to say that libraries provide a behavior encapsulation; you don't have to know
how the behavior is made for using it but you just use it.

Libraries can be very specific, or can have a global purpose.

For instance, if you intend to design firmware that connects the Arduino to the
Internet in order to grab some information from a mail server, and react by making
an LED matrix blink in one way or another according to the content of the mail
server's response, you have the following two solutions:

* Code the whole firmware from scratch

* Use libraries

Even if we like to code things, we are happier if we can focus on the global purpose
of our designs, aren't we?

In that case, we'll try to find libraries already designed specifically for the behaviors
we need. For instance, there is probably a library specifically designed for LED
matrix control, and another one with a server-connection purpose.

Discovering the Arduino native library

The native library is designed for a very elementary and global purpose. It means
it may not be enough, but it also means you'll use it every time in all your
firmware design.

You can find it at http: //arduino.cc/en/Reference/HomePage. This page will be
familiar to you by now!

It is divided in the following three parts:

* Structure (from global conditional control structures to more specific ones)
* Variables (related to types and conversions between types)

* Functions (from I/O functions to math calculation ones and more)

[40]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The following steps can be used to find help directly in IDE:
1. Open your IDE.

2. Go to File | Examples; you'll see the following screenshot:

[} ArduinomEdi: Sketch Tools Help
800 New

Open...
Sketchbook

sketch_augo3a [EEWEET | 01l.Basics
Close 2W 02.Digital BlinkWithoutDelay

Save 8S 03.Analog Button

Save As... {385 04.Communication Debounce

Upload ®U 05.Control DigitallputPullup

Upload Using Programmer {+3U 06.Sensors StateChangeDetection
07.Display toneKeyboard

nge Setup P 08.5trings toneMelody

Print #P . 09.USB(Leonardo) toneMultiple
ArduinolSP tonePitchFollower

YAl

YYYyYYVYYY

EEPROM
Ethernet
Firmata

LiquidCrystal
SD

Servo
SoftwareSerial
SP1

Stepper

Wire

YYYVYYYYYYY

Arduino Mega 2560 or Mega ADK an jdev/tty.usbmodemfal31

In the first part of the menu (in the preceding screenshot), you have lots of
examples related to the native library only.

3. Select the 02.Digital button.

[41]

www.it-ebooks.info

http://www.it-ebooks.info/

First Contact with C

4. A new window is displayed. Right-click on a colored keyword in the code as
shown in the next screenshot:

® Arduino File Edit Sketch Tools Help
= sketch_aug03a | Arduino 1.0.1

Button | Arduino 1.0.1

Button

A variobles will change:
int buttonState = 8; /¢ warioble for reading the pushbutton stotus

woid =zetup() {
/¢ initialize the LED pin az an output:
pintoded ledPin, OUTPUT);
A¢ initialize the pushbutton pin gz an input:
pintode{buttonPin, INPUT);

¥

wioid Loop
/¢ read the stote of the pushbutton

value:
buttonState = digif—= 7rrroemiens
Cut

s

A4 check if the pug CD[J\"

¢FAF it is, the by for F

if (buttonState == opy tor Forum
/¢ turn LED an: Copy as HTML
digitalirite{ledt paste

¥ Select All

elze {
A4 turn LED off:
digitalyrite(ledk Comment/Uncomment

K Increase Indent
Decrease Indent

}

Find in Reference

Arduino Mega 2560 or Mega ADK on /dev/tty.usbmodemfal3l

Finding information in reference for all reserved keywords directly in the Arduino IDE

5. You can see at the bottom of this contextual menu Find in Reference. This is
a really useful tool that you are going to understand right now; click on it!

Your IDE directly called your default browser with an HTML page corresponding
to the help page of the keyword on which you clicked. You can stay focused inside
your IDE and go to help.

[42]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Ardwno Reference - DigaalRead
L M| Diar | o L2 | 5 ey usars fjusen Deskion Arduiss sopiCr & 1]

ARDUINO

Boy Downioad Geming Sarmed Learming Reference Hardware FAQ

Reference Langasge | Likrasies | Comparison | Changes

digitalRead()

s the value from a specified digital pin. either HIGH or LOW.

The useful local help files that are available

Other libraries included and not directly
provided

The Arduino library has progressively included both necessary and useful other
libraries. We have seen in the earlier chapter that the used libraries are now integrated
into the core of the Arduino distribution, which is a bit abusive, but summarizes well
the fact that they are available when you install only the Arduino IDE package.

Some very useful included libraries

EEPROM provides functions and classes to read/write in hardware storage
components. It is very useful to store something beyond the power state of
the Arduino, that is, even when the power is off.

Ethernet helps to make layer 2 and layer 3 communications over an Ethernet
network.

Firmata is used for serial communication.

SD provides an easy way to read/write SD Cards; it is a more user-friendly
alternative to the EEPROM solution.

Servo helps to control servo motors.

[43]

www.it-ebooks.info

http://www.it-ebooks.info/

First Contact with C

There are a couple more libraries in the core distribution. Sometimes, new ones
are included.

Some external libraries

I suggest that you check other libraries quoted and referenced on the same page at
the link http://arduino.cc/en/Reference/Libraries.

I especially used a lot of the following libraries:

* TLC5940: Used to control a 16-channel, 12-bit LED controller smoothly

* MsTimer2: Used to trigger an action that has to be very fast and even each 1
ms (this library is also a nice hack of one of the hardware timers included in
the chipset)

* Tone: Used to generate audible square waves

You can use Google to find more libraries. You will find a lot of them, but not all are
equally documented and maintained. We'll see in the last chapter of this book how to
create our own library, and of course how to document it nicely for both other users
and ourselves.

Checking all basic development steps

We are not here together to understand the entire details of code compilation. But I
want to give you a global explanation that will help you to understand better how it
works under the hood. It will also help you to understand how to debug your source
code and why something wouldn't work in any random case.

Let's begin by a flowchart showing the entire process.

[44]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

code

(e

code with
substitutions

Cand C+ + source

Preprocessor

C and C++ source

A4
Parse Tree

Parser

Assembly

Translation

Files

Assembler

Many Object

AV4

_
Binary

Executable
Code

Linker

From the source code to the binary executable code

The following steps are executed to take the code from the source to the executable
production stage:

1.

The C and C++ source code is just the type of code you already wrote for the

Blink250ms project in Chapter 1, Let's Plug Things.

Headers are usually included at the beginning of your code, and they

refer to other files with the extension .h in which there are some definitions
and class declarations. This kind of design, in which you have separate files

for the source code (the program you are currently writing) and the headers
(already made elements), provides a nice way to re-use your already written

code.

[45]

www.it-ebooks

.info

http://www.it-ebooks.info/

First Contact with C

3.

The Preprocessor is a routine that basically substitutes text elements in your
code, considering the headers and other constants' definitions.

The Parser prepares a file that will be translated, and that file will be
assembled to produce multiple object files.

An object file contains machine code that is not directly executable by any
hardware processor.

The last important step is the linkage made by the linker program. The
linker takes all objects produced by the previous compilation steps and
combines them into a single executable file called program.

From the source code to the object file, all processes are summarized under
the name compilation.

Usually, libraries provide object files, ready to be linked by the linker.
Sometimes, especially in the open source world, libraries come with source
code too. This makes any changes in the library easier. In that case, the
library itself would have to be compiled to produce the required object files
that would be used in your global code compilation.

Hence, we'll define compilation as the whole process from the source code to
the program.

I should even use and introduce another term: cross-compilation. Indeed, we are
compiling the source code on our computer, but the final targeted processor of our
resulting program (firmware) is the Arduino's processor.

Generally, we define cross-compilation as the process of compiling source code using
a processor in order to make a program for another processor.

Now, let's move further and learn how we are going to test our initial pieces of C
code precisely using the IDE console.

Using the serial monitor

The Arduino board itself can communicate easily using basic protocols for serial
communication.

[46]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Basically, serial communication is the process of sending data elements over a
channel, often named a bus. Usually, data elements are bytes, but it all depends on
the implementation of the serial communication.

In serial communication, data is sent sequentially, one after the previous one. This
is the opposite of parallel communication, where data are sent over more than one
channel, all at the same time.

Baud rate

Because the two entities that want to communicate using serial communications have
to be okay about the answer to the question "Hey, what is a word?", we have to use
the same speed of transmission on both sides. Indeed, if I send 001010101010, isita
whole word or are there many words? We have to define, for instance, that a word is
four-digits long. Then, we can understand that the previous example contains three
words: 0010, 1010, and 1010. This involves a clock.

That clock definition is made by initializing serial communication at a particular
speed in baud, also called baud rate.

1 baud means 1 symbol transmitted per second. A symbol can be more than one bit.

This is why we don't have to create confusion between bps, bit per second, and baud!

Serial communication with Arduino

Each Arduino board has at least one serial port. It can be used by using digital
pins 0 and 1, or directly using the USB connection when you want to use serial
communication with your computer.

You can check http://arduino.cc/en/Reference/serial.

On the Arduino board, you can read RX and TX on both digital pins 0 and 1
respectively. TX means transmit and RX means receive; indeed, the most basic serial
communication requires two wires.

[47]

www.it-ebooks.info

http://www.it-ebooks.info/

First Contact with C

There are many other kinds of serial communication buses we'll describe a bit later in
Chapter 10, Some Advanced Techniques, in the Using I2C and SPI for LCD, LED, and other
funny games section.

If you use serial communication on your Arduino
s board, you cannot use the digital pins 0 and 1.

www.arduino.cc

Check TX and RX on digital pins 1 and 0

Arduino IDE provides a nice serial monitor that displays all symbols sent by the
board to the computer via the USB interface. It provides a lot of baud rates from 300
baud to 115,200 baud. We are going to check how to use it in the following sections.

Serial monitoring

Serial monitoring is the way of creating very basic and easy communication with our
board! It means we can program it to speak to us, via the serial monitor.

If you have to debug something and the board's behavior differs from what you

are expecting from it, and you want to "verify whether the problem stems from the
firmware or not, you can create some routines that will write messages to you. These
messages are called traces. Traces can be totally necessary for debugging source code.

Traces will be described in detail in the next chapter.

[48]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Making the Arduino talk to us

Imagine that you have followed carefully the B1ink250ms project, everything is wired
correctly, you double-checked that, and the code seems okay too, but it doesn't work.

Our LED isn't blinking at all. How to be sure that the 1oop () structure of your code
is correctly running? We'll modify the code a bit in order to trace its steps.

Adding serial communication to Blink250ms

Here, in the following code, we'll add serial communication for the LED to blink
every 250 ms:

1.
2.

Open your previous code.

Use Save As to create another project under the name
TalkingAndBlink250ms.

It is good practice to start from an already existing
code, to save it under another name, and to modify it
T according to your needs.

Modify the current code by adding all rows beginning with Serial
as follows:
/*

TalkingAndBlink250ms Program

Turns a LED connected to digital pin 8 on for 250ms, then off
for 1s, infinitely.

In both steps, the Arduino Board send data to the console of the
IDE for information purpose.

Written by Julien Bayle, this example code is under Creative
Commons CC-BY-SA

*/

// Pin 8 is the one connected to our pretty LED
int ledPin = 8; // ledPin is an integer variable initialized at 8

/] —-=---=---- setup routine

[49]

www.it-ebooks.info

http://www.it-ebooks.info/

First Contact with C

void setup()

pinMode (ledPin, OUTPUT); // initialize the digital pin as an
output

Serial.begin(9600) ; // Serial communication setup at 9600
baud
Y/o--------- loop routine

void loop () {
digitalWrite (ledPin, HIGH)

Serial.print ("the pin ");
Serial.print (ledPin) ;

8)
Serial.println(" is on");

delay (250) ;
state

digitalWrite (ledPin, LOW) ;

Serial.print ("the pin ");
Serial.print (ledPin) ;
Serial.println(" is off");

delay (1000) ;
state

}

1

//

//
//

//

//

//
//
//

//

turn the LED on

print "the pin "
print ledPin's value (currently

print " is on"

wait for 250ms in the current

turn the LED off
print "the pin "
print ledPin's value (still 8)

print " is off

wait for 1ls in the current

[50]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Please notice that I highlight the comment code a bit each time
in order to make things more readable. In the following steps,

% for instance, I won't write the following comment:
/[e

loop routine

You can also find the whole code in the zip file in the folder
Chapter02/TalkingAndBlink250ms/.

4. Click on the Serial Monitor button in the Arduino IDE:

alkingAndBlink250ms | Arduine 1.0.1

25Bms, then off for 1z, infinitelw.
the console of the IDE for information purposs.

under Creative Commons CC-BY-Sh

integer warioble initiolized at &

e digital pin as an oubput

ication setup ot 2688 bouds

on

Click on the little glass symbol in the top-right corner to activate the Serial Monitor

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

First Contact with C

5. Choose the same baud rate you wrote in the code, which is in the menu at the
bottom-right of the Serial Monitoring window, and observe what
is happening.

TalkingAndBlink250ms | Arduino 1.0.1

TalkingAndBlink250ms
A
TalkingAndB link258ms Program
Turhs a LED connected to digital pin & on for 25ms, then off for 1z, infinitely.
In boths steps, the Arduino Boord send data to the console of the IDE for informotion purpose.
Written by Julien Bawle, thiz exomple code iz under Creative Commons CC-BY-SA
#4
44 Pin & iz the one connected to our prg@LOL 6 Jdev/tty.usbmodemfal31
int ledPin = 8; A LledP (Send)
[—— zetup routine the P1:-ﬂ 8 ?5 off
void setup() { the pin 8 is on
pintode ledPin, OUTPUT); /¢ inif the pin 8 is off
the pin 8 is on
Seriol.begindI668%; /¢ gerd the pin 8 is off
T the pin 8 is on
the pin 8 is off
£ ——————e loop routine the pin 8 1s on
void loop() { the pin 8 is off
digitalirite{ledPin, HIGHY; // tupd the pin 8 is on
the pin 8 is off
Serial.print{"the pin "J; /¢ prif the pin 8 is on
Serial.print{ledPind; /¢ prif the pin B 1s off
Serial.printind" is on"); /¢ prin the pin 8 is on
the pin 8 is off .
de Loy (25873 /¢ wail 1
[. [.
digitaliritelledPin, LW /v ol gAutoscroll Both NL& CR | .J 9600 baud | 'J
Seriatprinttre pin 3 /7 peir NN
Seriol.print ledPiny; /¢ print ledPin's value (still &)
Serial.printlng” iz off"); A print " iz off"
de Loy (1R8aY) 3 A4 wait for 1= in the current stote
+

Binary sketch size: 4 788 bytes (of o 258 @48 byte moximum)

Arduino Mega 2560 or Mega ADK on /dev/tty.usbmodemfal3l

Your Arduino board seems to be speaking to you!

You will notice some messages appearing in the Serial Monitor window,
synchronized with the blinking LED states.

Now, we can be sure that our code is fine because each message is sent and because
all rows are processed sequentially; it means the digitalwrite () functions are also
called correctly (nothing is blocked). This information can be a clue, for instance, to
check our circuit once more to try to find the error there instead of in the code.

Of course this is a trivial example, but I'm sure you understand the target and the
power of tracing your code!

[52]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Serial functions in more detail
Let's check what we added in the code.

Serial.begin()

Everything begins with the Serial.begin () function. This function in the setup ()
routine is executed only once, that is, when the Arduino is starting.

In the code, I set up the board to initiate a serial communication at 9,600 baud.

Serial.print() and Serial.printin()

Serial.print () and Serial.println() behave almost identically: they write
something to the serial output, but the 1n version also adds a carriage return and a
newline.

The syntax of this function is Serial.print (val) or Serial.print (val, format).
You can pass one or two arguments.

Basically, if serial.print (5) prints the number 5 as an ASCII-encoded decimal
symbol, Serial.print (5,0CT) prints the number 5 as an ASCII-encoded octal one.

Digging a bit...

If you checked the code carefully (and I'm sure you did), you noticed we put two
groups of three rows: one group just after the digital Write(ledPin, HIGH) function
that lights on the LED, and the other group after the row that lights it off.

Got it?

We have asked the Arduino board to send a message according to the last order
passed to the digital pin numbered 8, where the LED is still connected. And the
board sends a message when we asked the pin to deliver current (when the LED is
on), and another message when the pin doesn't deliver current (when the LED is off).

You just wrote your first trace routine.

[53]

www.it-ebooks.info

http://www.it-ebooks.info/

First Contact with C

Talking to the board from the computer

You probably noticed a text field and a Send button in the Serial Monitor window:

- L_- Send -_.'

the pin 8 is con
the pin 8 is off

il L

We can send symbol to our Arduino board using Serial Communication

This means we can also use that tool to send data to the board from our computer.
The firmware's board, however, has to implement some other functions in order to
be able to understand what we'd like to send.

Later in this book we'll see how to use the Serial Monitor window, the genius
Processing framework, and the Max 6 framework to send messages easily to the
Arduino board.

Summary

In this chapter, we learned about programming using C language. We also learned
how to use the serial monitoring feature of our Arduino IDE in order to know a bit
more about what is happening in real time in our Arduino processor using traces.

I spoke about serial communication because it is very useful and is also used in
many real-life projects in which you need a computer and an Arduino board to
communicate among themselves. It can also be used between two Arduino boards or
between Arduino boards and other circuits.

In the next chapter, we'll enter C code by using the serial monitoring window in
order to make things a bit less abstract.

[54]

www.it-ebooks.info

http://www.it-ebooks.info/

C Basics — Making
You Stronger

C programming isn't that hard. But it requires enough work at the beginning.
Fortunately, I'm with you and we have a very good friend since three chapters - our
Arduino board. We will now go deep into the C language, and I'll do my best to be
more concrete and not abstract.

This chapter and the next one are truly C language-oriented because the Arduino
program design requires knowledge in programming logic statements. After these
two chapters, you'll be able to read any code in this book; these strong basics will
also help you in further projects, even those not related to Arduino.

I will also progressively introduce new concepts that we will use later, such as
functions. Don't be afraid if you don't understand it that well, I like my students to
hear some words progressively sometimes even without a proper definition at first,
because it helps further explanation.

So if I don't define it but talk about it, just relax, explanations are going to come
further. Let's dive in.

Approaching variables and types of data

We already used variables in the previous chapters' examples. Now, let's understand
this concept better.

www.it-ebooks.info

http://www.it-ebooks.info/

C Basics - Making You Stronger

What is a variable?

A variable is a memory storage location bounded to a symbolic name. This reserved
memory area can be filled or left empty. Basically, it is used to store different types of
values. We used the variable 1edpin in our previous examples, with the keyword int.

Something very useful with variables is the fact that we can change their content (the
value) at runtime; this is also why they are called variables, compared to constants
that also store values, but that cannot be changed while the program is running.

What is a type?

Variables (and constants) are associated with a type. A type, also called data type,
defines the possible nature of data. It also offers a nice way to directly reserve a
space with a defined size in memory. C has around 10 main types of data that can be
extended as we are going to see here.

I'm deliberately only explaining the types we'll use a lot in Arduino programming.
This fits with approximately 80 percent of other usual C data types and will be more
than enough here.

Basically, we are using a type when we declare a variable as shown here:
int ledPin; // declare a variable of the type int and named "ledPin"

A space of a particular size (the size related to the int type) is reserved in memory,
and, as you can see, if you only write that line, there is still no data stored in that
variable. But keep in mind that a memory space is reserved, ready to be used to
store values.

Type Definition Size in memory

void This particular type is used only in function declarations
and while defining pointers with unknown types. We'll
see that in the next chapter.

boolean It stores false or true. 1 byte (8 bit)

char It stores single-quoted characters such as 'a' as 1 byte
numbers, following the ASCII chart (http://
en.wikipedia.org/wiki/ASCII chart).

It is a signed type and stores numbers from -128 to 127; it
can be unsigned and then stores numbers from 0 to 255.

[56]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Type Definition Size in memory

byte It stores numbers as 8-bit unsigned data that means from 8 bits
0 to 255.

int It stores numbers as 2-bytes signed data which means 2 bytes (16 bit)
from -32,768 to 32,767 it can also be unsigned and then
store numbers from 0 to 65,535.

word It stores numbers as 2-bytes unsigned data exactly as 2 bytes (16 bit)
unsigned int does.

long It stores numbers as 4-bytes signed data, which means 4 bytes (32 bit)
from -2,147,483,648 to 2,147,483,647 and can be unsigned
and then stores numbers from 0 to 4,294,967,295.

float It basically stores numbers with a decimal point from 4 bytes (32 bit)
-3.4028235E + 38 to 3.4028235E + 38 as 4-bytes signed
data.
Be careful of the required precision; they only have six
to seven decimal digits and can give strange rounding
results sometimes.

double It generally stores f1oat values with a precision two 4 bytes (32 bit)
times greater than the f1oat value.
Be careful, in the Arduino IDE and the board, the
double implementation is exactly the same as float;
that means with only six to seven decimal digits of
precision.

Array Array is an ordered structure of consecutive elements of number of
the same type that can each be accessed with an index elements x size
number. of elements'

type

string It stores text strings in an array of char where the number of
last element is null that is a particular character elements * 1
(ASCII code 0). Be careful of the "s" in lower case at the ~ byte
beginning of string.

String [tis a particular structure of data, namely a class, that available every

provides a nice way to use and work with strings of text.

It comes with methods/functions to easily concatenate
strings, split strings, and much more. Be careful of the
capital "S" at the beginning of String.

time with the
length ()
method

[57]

www.it-ebooks.info

http://www.it-ebooks.info/

C Basics - Making You Stronger

The roll over/wrap concept

If you go beyond the possible bounds of a type, the variable rolls over to the other
side of the boundary.

The following is an example:

int myInt = 32767; //the maximum int value
myInt = myInt + 1; // myInt is now -32768

It happens in both directions, subtracting 1 from an int variable storing -32768
results in 32767. Keep that in mind.

Declaring and defining variables

We are going to describe how to declare then define variables and learn how to do
both at the same time.

Declaring variables

Declaration of a variable is a statement in which you specify an identifier, a type, and
eventually the variable's dimensions.

An identifier is what we call the name of the variable. You know what the type is too.
The dimensions are useful for arrays, for instance, but also for String (which are
processed as arrays internally).

In C and all other strongly-typed languages such as Java and Python, we must
declare variables before using them. Anyway, the compiler will complain in case you
forget the declaration.

[58]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Defining variables

The following table contains some examples of variable definition:

Type Example
boolean bool myVariable; // declaration of the variable
myVariable = true; // definition of the variable by
assigning it a value
bool myOtherVariable = false; // declaration and definition
inside the same statement !
char char myChar = 'U'; // declaration and definition using the
ASCII value of 'U' (i.e 85)
char myOtherChar = 85; // equals the previous statement
char myDefaultChar = 128; // this gives an ERROR because
char are signed from -128 to 127
unsigned char myUnsignedChar = 128; // this is correct !
byte byte myByte = B10111l; // 23 in binary notation with the B
notation
byte myOtherByte = 23; // equals the previous statement
int int ledPin = 8; // classic for us, now :)
unsigned myUint = 32768; // very okay with the prefix
unsigned !
word word myWord = 12345;
long long myLong = -123; // don't forget that we can use negative
numbers too!
long myOtherLong = 345;
unsigned myUlong = 2147483648; // correct because of the
unsigned prefix
float float myFloat = -123456.1; // they can be negative.
float myOtherFloat = 1.234567; //
float myNoDecimalPointedFloat = 1234; // they can have a
decimal part equaling zero
double double myDouble = 1.234567; // Arduino implementation of

double is same as float

[59]

www.it-ebooks.info

http://www.it-ebooks.info/

C Basics - Making You Stronger

Type Example

Array int myIntTable[5]; // declaration of a table that can
contain 5 integers
boolean myOtherTab[] = { false, true, true}; // declaration

and definition of a 3 boolean arrays

myIntTable[5]; // considering the previous definition, this
gives an array bound ERROR (index starts from 0 and thus the
last one here is myIntTable[4])

myOtherTab[1]; // this elements can be manipulated as a
boolean, it IS a boolean with the value true

string char mystringl[3]; // a string of 3 characters
char mystring2[4] {tbr,'y','t",'e'}; // declaration &

definition

"byte"; // equals to mystring2;
"byte"; // equals to mystring3;

char mystring3 [4]

char mystring4 []

Defining a variable is the act of assigning a value to the memory area previously
reserved for that variable.

Let's declare and define some variables of each type. I have put some explanations in
the code's comments.

Here are some examples you can use, but you'll see in each piece of code given in
this book that different types of declaration and definition are used. You'll be okay
with that as soon as we'll wire the board.

Let's dig a bit more into the string type.

String
The string type deserves a entire subchapter because it is a bit more than a type.
Indeed, it is an object (in the sense of object-oriented programming).

Objects come with special properties and functions. Properties and functions are
available natively because String is now a part of the Arduino core and can be seen
as a pre-existing entity even if your IDE contains no line.

Again, the framework takes care of things for you, providing you a type/object with
powerful and already coded functions that are directly usable.

Check out http://arduino.cc/en/Reference/StringObject in the
Arduino website.

[60]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

String definition is a construction

We talked about definition for variables, but objects have a similar concept called
construction.

For string objects, I'm talking about construction instead of definition here but you
can consider both terms equal. Declaring a string type in Arduino core involves an
object constructor, which is an object-oriented programming concept; we don't have
to handle it, fortunately, at this point.

String myString0l = "Hello my friend"; // usual constant string to
construct it

String myString02 = String('U'); // convert U char into a String
object

// concatenating 2 String together and put the result into another
String myString03 = String(myString0l + ", we are trying to play with
String(s)) ;

// converting the current value of integer into a String object
int myNiceInt = 8; // define an integer
String myString04 = String(myNiceInt); // convert to a String object

// converting the current value of an integer w/ a base into a String
object

int myNiceInt = 47; // define an integer

String myString05 = String(myNicelInt, DEC) ;

String myString06 = String(myNicelInt, HEX) ;

String myString07 = String(myNicelInt, BIN) ;

Using indexes and search inside String

Strings are arrays of char elements. This means we can access any element of a
String type through their indexes.

Keep in mind that indexes start at 0 and not at 1. The String objects implement
some functions for this particular purpose.

charAt()

Considering a string type is declared and defined as follows:

String myString = "Hello World !!";

[61]

www.it-ebooks.info

http://www.it-ebooks.info/

C Basics - Making You Stronger

The statement myString. charat (3) returns the fourth element of the string that is:

1. Notice the specific notation used here: we have the name of the string variable, a
dot, then the name of the function (which is a method of the string object), and the

parameter 3 which is passed to the function.

The charat () function returns a character at a particular
. position inside a string.
% Syntax: string.charAt (int) ;
= int is an integer representing an index of the String value.
Returns type: char

Let's learn about other similar functions. You'll use them very often because, as we
have already seen, communicating at a very low-level point of view includes parsing
and processing data, which can very often be strings.

indexOf() and lastindexOf()

Let's consider the same declaration/ definition:

String myString = "Hello World !!";

myString.indexOf ('r') equals 8. Indeed, r is at the ninth place of the value of the
string myString. indexOf (val) and looks for the first occurrence of the value val.

If you want to begin your search from a particular point, you can specify a start
point like that: indexOf (val, start), where start is the index from where the
function begins to search for the character val in the string. As you have probably
understood, the second argument of this function (start) can be omitted, the search
starts from the first element of the string by default, which is o.

The indexOf () function returns the first occurrence of a string or
character inside a string.

Syntax: string. indexOf (val, from);

%j%‘\ val is the value to search for which can be a string or a character.
fromis the index to start the search from, which is an int type.
This argument can be omitted. The search goes forward.

Returns type: int

Similarly, lastIndexOf (val, start) looks for the last occurrence of val, searching
backwards from start, or from the last element if you omit start.

[62]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The lastIndexof () function returns the last occurrence of a string or character
inside a string.

Syntax: string.lastIndexOf (val, from);

val is the value to search for which is a string or a character.
% fromis the index to start the search from which is an int type.
"~ . .
This argument can be omitted. The search goes backwards.

Returns type: int

startsWith() and endsWith()

The startswith () and endswith () functions check whether a string starts or ends
with, respectively, another string passed as an argument to the function.

String myString = "Hello World !!";

String anotherString ="Hell"

myString.startsWith (anotherString); // this returns true
myString.startsWith ("World"); // this returns false

The startsWith () function returns true if a string starts with the
same characters as another string.

% Syntax: string.startsWith (string2) ;

L
string? is the string pattern with which you want to test the string.
Returns type: boolean

I guess, you have begun to understand right now. endswith () works like that too,
but compares the string pattern with the end of the string tested.

The endsWith () function returns true if a string ends with the
same characters as another string.

Syntax: string.endsWith (string2) ;
L

string2 is the string pattern with which you want to test the
string.

- Returns type: boolean

Concatenation, extraction, and replacement

The preceding operations also introduce new C operators. I'm using them here with
strings but you'll learn a bit more about them in a more global context further.

[63]

www.it-ebooks.info

http://www.it-ebooks.info/

C Basics - Making You Stronger

Concatenation

Concatenation of strings is an operation in which you take two strings and you glue
them together. It results in a new string composed of the previous two strings. The
order is important; you have to manage which string you want appended to the end
of the other.

Concat()

Arduino core comes with the string. concat () function, which is especially
designed for this purpose.

String firstString = "Hello ";
String secondString ="World!";

// appending the second to the first and put the result in the first

firstString.concat (secondString) ;

The concat () function appends one string to another (that .
is concatenate in a defined order).
Syntax: string.concat (string2) ;

% string2 is a string and is appended to the end of string.
/& Remember that, the previous content of the string is

overwritten as a result of the concatenation.
Returns type: int (the function returns 1 if the concatenation

- happens correctly). -

Using the + operator on strings

There is another way to concatenate two strings. That one doesn't use a function but
an operator: +.

String firstString = "Hello ";
String secondString ="World!";

// appending the second to the first and putting the result in the
first

firstString = firstString + secondString;

This code is the same as the previous one. + is an operator that I'll describe better
a bit later. I'm giving you something more here: a condensed notation for the +
operator:

firstString = firstString + secondString;

[64]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

This can also be written as:

firstString += secondString;

Try it. You'll understand.

Extract and replace

String manipulation and alteration can be done using some very useful functions
extracting and replacing elements in the string.

substring() is the extractor

You want to extract a part of a string. Imagine if the Arduino board sends messages
with a specific and defined communication protocol:

<output numbers>.<value>

The output number is coded with two characters every time, and the value with
three (45 has to be written as 045). I often work like that and pop out these kind
of messages from the serial port of my computer via the USB when I need to; for
instance, send a command to light up a particular LED with a particular intensity.
If I want to light the LED on the fourth output at 100/127, I send:

04.100

Arduino needs to understand this message. Without going further with the
communication protocol design, as that will be covered in Chapter 7, Talking Over
Serial, I want to introduce you to a new feature —splitting strings.

String receivedMessage = "04.100";
String currentOutputNumber;
String currentValueNumber;

// extracting a part of receivedMessage from index 0 (included) to 1
(excluded)

currentOutputNumber = receivedMessage.substring(0,2);

// extracting a part of receivedMessage from index 3 (included) to the
end

currentValueNumber = receivedMessage.substring(3) ;

[65]

www.it-ebooks.info

http://www.it-ebooks.info/

C Basics - Making You Stronger

This piece of code splits the message received by Arduino into two parts.

The substring () function extracts a part of a string from a start
index (included) to another (not included).

Syntax: string.substring (from, to);

%%‘ from is the start index. The result includes the content of the from
string element. to is the end index. The result doesn't include the
content of the end string element, it can be omitted.

Returns type: String

Let's push the concept of string extract and split it a bit further.

Splitting a string using a separator

Let's challenge ourselves a bit. Imagine I don't know or I'm not sure about the
message format (two characters, a dot, and three characters, that we have just seen).
This is a real life case; while learning to make things, we often meet strange cases
where those things don't behave as expected.

Imagine I want to use the dot as a separator, because I'm very sure about it. How
can I do that using the things that we have already learned? I'd need to extract
characters. OK, I know substring () now!

But I also need an index to extract the content at a particular place. I also know how
to find the index of an occurrence of a character in a string, using index0f ().

Here is how we do that:

String receivedMessage = "04.100";
String currentOutputNumber;
String currentValueNumber;

int splitPointIndex;

// storing the index of the separator in the String
splitPointIndex = receivedMessage.indexOf ('.');

// extracting my two elements
currentOutputNumber = receivedMessage.substring (0, splitPointIndex) ;
currentValueNumber = receivedMessage.substring(splitPointIndex + 1);

Firstly, I find the split point index (the place in the string where the dot sits).
Secondly, I use this result as the last element of my extracted substring. Don't worry,

the last element isn't included, which means currentOutputNumber doesn't contain
the dot.

[66]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

At last, I'm using splitPointIndex one more time as the start of the second part of
the string that I need to extract. And what? I add the integer 1 to it because, as you
master substring () now and know, the element corresponding to the start index is
always included by the substring () operation. We don't want that dot because it is
only a separator. Right?

Don't worry if you are a bit lost. Things will become clearer in the next subchapters
and especially when we'll make Arduino process things, which will come a bit later
in the book.

Replacement

Replacements are often used when we want to convert a communication protocol to
another. For instance, we need to replace a part of a string by another to prepare a
further process.

Let's take our previous example. We now want to replace the dot by another
character because we want to send the result to another process that only
understands the space character as a separator.

String receivedMessage = "04.100";
String originalMessage;

// keeping a trace of the previous message by putting it into another
variable

originalMessage = receivedMessage;

// replacing dot by space character in receivedMessage
receivedMessage.replace('.',"' ');

Firstly, I put the content of the receivedMessage variable into another variable named
originalMessage because I know the replace () function will definitely modify the
processed string. Then I process receivedMessage with the replace () function.

The replace () function replaces a part of a string with another string.

Syntax: string.replace (substringToReplace,
replacingSubstring) ;

A fromis the start index. The result includes the content of a from string
& element. to is the end index. The result doesn't include the content of
= an end string element, it can be omitted. Remember that, the previous
content of the string is overwritten as a result of the replacement (copy it
to another string variable if you want to keep it).

Returns type: int (the function returns 1 if the concatenation
- happens correctly). -

[67]

www.it-ebooks.info

http://www.it-ebooks.info/

C Basics - Making You Stronger

This function can, obviously, replace a character by another character of course.
A string is an array of characters. It is not strange that one character can be processed
as a string with only one element. Let's think about it a bit.

Other string functions

There are some other string processing functions I'd like to quickly quote here.

toCharArray()

This function copies all the string's characters into a "real" character array, also
named, for internal reasons, a buffer. You can check http://arduino.cc/en/
Reference/StringToCharArray.

toLowerCase() and toUpperCase()

These functions replace the strings processed by them by the same string but

with all characters in lowercase and uppercase respectively. You can check
http://arduino.cc/en/Reference/StringToLower and http://arduino.cc/en/
Reference/StringToUpperCase. Be careful, as it overwrites the string processed
with the result of this process.

trim()

This function removes all whitespace in your string. You can check http://
arduino.cc/en/Reference/StringTrim. Again, be careful, as it overwrites
the strings processed with the result of this process.

length()

I wanted to end with this functioin. This is the one you'll use a lot. It provides the
length of a string as an integer. You can check http://arduino.cc/en/Reference/
StringLength.

Testing variables on the board

The following is a piece of code that you can also find in the folder chaptero03/
VariablesVariations/:

/*

Variables Variations Program

This firmware pops out messages over Serial to better understand
variables' use.

[68]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Switch on the Serial Monitoring window and reset the board after
that.

Observe and check the code :)

Written by Julien Bayle, this example code is under Creative Commons
CC-BY-SA
*/

// declaring variables before having fun !
boolean myBoolean;

char myChar;

int myInt;

float myFloat;

String myString;

void setup () {
Serial.begin(9600) ;
myBoolean = false;

myChar = 'A';

myInt = 1;

myFloat = 5.6789 ;

myString = "Hello Human!!";

void loop () {

// checking the boolean
if (myBoolean) ({
Serial.println("myBoolean is true");
}
else {
Serial.println("myBoolean is false");

// playing with char & int
Serial.print ("myChar is currently ");
Serial.write (myChar) ;
Serial.println() ;

Serial.print ("myInt is currently ");
Serial.print (myInt) ;

[69]

www.it-ebooks.info

http://www.it-ebooks.info/

C Basics - Making You Stronger

Serial.println() ;

Serial.print ("Then, here is myChar + myInt : ");
Serial.write (myChar + myInt) ;
Serial.println() ;

// playing with float & int
Serial.print ("myFloat is : ");
Serial.print (myFloat) ;
Serial.println() ;

// putting the content of myFloat into myInt

myInt = myFloat;

Serial.print ("I put myFloat into myInt, and here is myInt now : ");
Serial.println (myInt) ;

// playing with String
Serial.print ("myString is currently: ");
Serial.println (myString) ;

myString += myChar; // concatening myString with myChar
Serial.print ("myString has a length of ");

Serial.print (myString.length());// printing the myString length
Serial.print (" and equals now: ");

Serial.println (myString) ;

// myString becomes too long, more than 15, removing the last 3

elements
if (myString.length() >= 15){
Serial.println("myString too long ... come on, let's clean it up!
")
myInt = myString.lastIndexOf('!'); // finding the place of the '!"'
myString = myString.substring(0,myInt+1l); // removing characters

Serial.print ("myString is now cleaner: ");
Serial.println (myString) ;

// putting true into myBoolean

}

else {

myBoolean = false; // resetting myBoolean to false
}
delay (5000) ; // let's make a pause

[70]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

// let's put 2 blank lines to have a clear read
Serial.println() ;
Serial.println() ;

}

Upload this code to your board, then switch on the serial monitor. At last, reset the
board by pushing the reset button and observe. The board writes directly to your
serial monitor as shown in the following screenshot:

8 00 fdev/tty.usbmodemfal3l

(Send)
myChar is currently A
myInt is currently 12
Then, here is myChar + myInt @ M
myFleat is @ 5.68
I put myFloat into myInt, ond here is myInt now @ 5
myString is currently: Hello Human!!
myString has a length of 14 and equals now: Helle Human!!A

myBoolean is false

myChar is currently A

myInt is currently 5

Then, here is myChar « myInt @ F

myFleat is @ 5.68

I put myFleat intc myInt, and here is myInt now : 5
myString is currently: Helle Human!!A

myString has a length of 15 and eguols now: Helle Human!!AA
myString too long ... come on, let’s clean it up!

myString is now cleaner: Hello Human!!

myBoolean is False

myChar is currently A

myInt is currently 12

Then, here is myChar + eyInt @ M

myFleat is 5.68

I put myFleat into myInt, and here is myInt now @ 5

myString is currently: Helle Human!!

myString has a length of 14 and eguals now: Helle Human!!A

@Autoscroll "No line ending ﬂ "9600 baud T]

The serial monitor showing you what your board is saying

Some explanations

All explanations will come progressively, but here is a small summary of what is
happening right now.

I first declare my variables and then define some in setup (). I could have declared
and defined them at the same time.

Refreshing your memory, setup () is executed only one time at the board startup.
Then, the 1oop () function is executed infinitely, sequentially running each row
of statement.

In 1oop (), I'm first testing myBoolean, introducing the if () conditional statement.
We'll learn this in this chapter too.

[71]

www.it-ebooks.info

http://www.it-ebooks.info/

C Basics - Making You Stronger

Then, I'll play a bit with the char, int, and String types, printing some variables,
then modifying them and reprinting them.

The main point to note here is the if () and else structure. Look at it, then relax,
answers will come very soon.

The scope concept

The scope can be defined as a particular property of a variable (and functions, as
we'll see further). Considering the source code, the scope of a variable is that part of
the code where this variable is visible and usable.

A variable can be global and then is visible and usable everywhere in the source code.
But a variable can also be local, declared inside a function, for instance, and that is
visible only inside this particular function.

The scope property is implicitly set by the place of the variable's declaration in the
code. You probably just understood that every variable could be declared globally.
Usually, I follow my own digital haiku.

that it has to know, no more.

[Let each part of your code know only variables]
s

Trying to minimize the scope of the variables is definitely a winning way. Check out
the following example:

// this variable is declared at the highest level, making it visible
everywhere
int globalString;

void setup () {
// .. some code

!

void loop () {
int a; // a is visible inside the loop function only
anotherFunction(); // calling the global function anotherFunction

// .. some other code

}

void anotherFunction() {

// .. yet another code

int veryLocalVar; // veryLocalVar is visible only in anotherFunction
function

}

[72]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

We could represent the code's scope as a box more or less imbricated.

Source Code

setup() function

leop() function

anotherFunction() function

Code's scope seen as boxes

The external box represents the source code's highest level of scope. Everything
declared at this level is visible and usable by all functions; it is the global level.

Every other box represents a particular scope in itself. Every variable declared in
one scope cannot be seen and used in higher scopes neither in the same level ones.

This representation is very useful to my students who always need more visuals.
We'll also use this metaphor while we talk about libraries, especially. What is
declared in libraries can be used in our code if we include some specific headers at
the beginning of the code, of course.

static, volatile, and const qualifiers

Qualifiers are the keywords that are used to change the processor's behavior
considering the qualified variable. In reality, the compiler will use these qualifiers to
change characteristics of the considered variables in the binary firmware produced.
We are going to learn about three qualifiers: static, volatile, and const.

[73]

www.it-ebooks.info

http://www.it-ebooks.info/

C Basics - Making You Stronger

static

When you use the static qualifier for a variable inside a function, this makes the
variable persistent between two calls of the function. Declaring a variable inside a
function makes the variable, implicitly, local to the function as we just learned. It
means only the function can know and use the variable. For instance:

int myGlobalVariable;

void setup () {

}

void loop () {
myFunction (digitalPinValue) ;

}

void myFunction (argument) {

int aLocalVariable;

alocalVariable = alLocalVariable + argument;
// playing with aLocalVariable

}

This variable is seen in the myFunction function only. But what happens after
the first loop? The previous value is lost and as soon as int alLocalvVariable; is
executed, a new variable is set up, with a value of zero. Check out this new piece
of code:

int myGlobalVariable;
void setup () {

}

void loop () {
myFunction(digitalPinValue) ;

}

void myFunction (argument) {

static int aStaticVariable;

aStaticVariable = aStaticVariable + argument;
// playing with aStaticVariable

}

This variable is seen in the myFunction function only and, after adding an argument
has modified it, we can play with its new value.

[74]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

In this case, the variable is qualified as static. It means the variable is declared only
the first time. This provides a useful way to keep trace of something and, at the same
time, make the variable, containing this trace, local.

volatile

When you use the volatile qualifier in a variable declaration statement, this
variable is loaded from the RAM instead of the storage register memory space of the
board. The difference is subtle and this qualifier is used in specific cases where your
code itself doesn't have the control of something else executed on the processor. One
example, among others, is the use of interrupts. We'll see that a bit later.

Basically, your code runs normally, and some instructions are triggered not by this
code, but by another process such as an external event. Indeed, our code doesn't
know when and what Interrupt Service Routine (ISR) does, but it stops when
something like that occurs, letting the CPU run ISR, then it continues. Loading the
variable from the RAM prevents some possible inconsistencies of variable value.

const

The const qualifier means constant. Qualifying a variable with const makes it
unvariable, which can sound weird.

If you try to write a value to a const variable after its declaration/definition
statement, the compiler gives an error. The scope's concept applies here too; we can
qualify a variable declared inside a function, or globally. This statement defines and
declares the masterMidiChannel variable as a constant:

const int masterMidiChannel = 10;
This is equivalent to:

#define masterMidiChannel 10

[There is no semicolon after a #def ine statement.]

#define seems a bit less used as const, probably because it cannot be used for
constant arrays. Whatever the case, const can always be used. Now, let's move on
and learn some new operators.

[75]

www.it-ebooks.info

http://www.it-ebooks.info/

C Basics - Making You Stronger

Operators, operator structures, and
precedence

We have already met a lot of operators. Let's first check the arithmetic operators.

Arithmetic operators and types

Arithmetic operators are:

* + (plussign)
* - (minus)

* * (asterisk)
* / (slash)

* 3% (percent)

* = (equal)

I'm beginning with the last one: =. It is the assignment operator. We have already
used it a lot to define a variable, which just means to assign a value to it. For instance:

int oscillatorFrequency = 440;

For the other operators, I'm going to distinguish two different cases in the following;:
character types, which include char and String, and numerical types. Operators can
change their effect a bit according to the types of variables.

Character types

char and String can only be processed by +. As you may have guessed, + is the
concatenation operator:

String myString = "Hello ";
String myString2 = "World";

String myResultString = myString + myString2;
myString.concat (myString2) ;

In this code, concatenation of myResultString and myString results in the Hello
World string.

[76]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Numerical types

With all numerical types (int, word, long, float, double), you can use the
following operators:

* + (addition)

* - (subtraction)

e (multiplication)
* / (division)

* % (modulo)

A basic example of multiplication is shown as follows:

float OutputOscillatorAmplitude = 5.5;
int multiplier = 3;
OutputOscillatorAmplitude = OutputOscillatorAmplitude * multiplier

As soon as you use a f1loat or double type as

one of the operand, the floating point calculation

process will be used.

In the previous code, the result of OutputOscillatorAmplitude * multiplierisa
float value. Of course, division by zero is prohibited; the reason is math instead of C
or Arduino.

Modulo is simply the remainder of the division of one integer by another one.
We'll use it a lot to keep variables into a controlled and chosen range. If you make
a variable grow to infinite but manipulate its modulo by 7 for instance, the result
will always be between 0 (when the growing variable will be a multiple of 7) and 6,
constraining the growing variable.

Condensed notations and precedence

As you may have noticed, there is a condensed way of writing an operation with these
previously explained operators. Let's see two equivalent notations and explain this.

Example 1:

int myIntl 1;
2;

int myInt2

myIntl = myIntl + myInt2;

[77]

www.it-ebooks.info

http://www.it-ebooks.info/

C Basics - Making You Stronger

Example 2:

int myIntl 1;
2;

int myInt2

myIntl += myInt2;

These two pieces of code are equivalent. The first one teaches you about the
precedence of operators. There is a table given in Appendix B, Operator Precedence in C
and C++ with all precedencies. Let's learn some right now.

+, -, *, /,and % have a greater precedence over =. That means myIntl + myInt2 is
calculated before the assignment operator, then, the result is assigned to myInt1.

The second one is the condensed version. It is equivalent to the first version and thus,
precedence applies here too. A little tricky example is shown as follows:

int myIntl = 1;
int myInt2 = 2;

myIntl += myInt2 + myInt2;

You need to know that + has a higher precedence over +=. It means the order of
operations is: first, myInt2 + myInt2 thenmyIntl + the result of the freshly made
calculation myInt2 + myInt2.Then, the result of the second is assigned to myInt1.
This means it is equivalent to:

int myIntl = 1;

int myInt2 = 2;

myIntl = myIntl + myInt2 + myInt2;

Increment and decrement operators

I want to point you to another condensed notation you'll meet often: the double
operator.

int myIntl = 1;

myInt++; // myIntl now contains 2
myInt--; // myIntl now contains 1

++ is equivalent to +=1, - - is equivalent to -=1. These are called suffix increment
(++) and suffix decrement (- -). They can also be used as prefix. ++ and - - as prefixes
have lower precedencies than their equivalent used as suffix but in both cases, the
precedence is very much higher than +, -, /, *, and even = and +=.

[78]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The following is a condensed table I can give you with the most used cases. In each
group, the operators have the same precedence. It drives the expression myInt++ +

3 to be ambiguous. Here, the use of parenthesis helps to define which calculation will
be made first.

Precedencies groups Operators Names

2 ++ Suffix increment

-- Suffix decrement

() Function call

(] Array element access
3 ++ Prefix increment

-- Prefix decrement

5 * Multiplication
/ Division
% Modulo
6 + Addition
- Subtraction
16 = Assignment
+= Assignment by sum

-= Assignment by difference
*= Assignment by product
/= Assignment by quotient

o\©
1]

Assignment by remainder

I guess you begin to feel a bit better with operators, right? Let's continue with a very
important step: types conversion.

Types manipulations

When you design a program, there is an important step consisting of choosing the
right type for each variable.

Choosing the right type

Sometimes, the choice is constrained by external factors. This happens when, for
instance, you use the Arduino with an external sensor able to send data coded as
integers in 10 bits (210 = 1024 steps of resolution). Would you choose byte type
knowing it only provides a way to store number from 0 to 255? Probably not! You'll
choose int.

[79]

www.it-ebooks.info

http://www.it-ebooks.info/

C Basics - Making You Stronger

Sometimes you have to choose it yourself. Imagine you have data coming to the
board from a Max 6 framework patch on the computer via your serial connection
(using USB). Because it is the most convenient, since you designed it like that, the
patch pops out £1oat numbers encapsulated into string messages to the board. After
having parsed, cut those messages into pieces to extract the information you need
(which is the float part), would you choose to store it into int?

That one is a bit more difficult to answer. It involves a conversion process.

Implicit and explicit types conversions

Type conversion is the process that changes an entity data type into another. Please
notice I didn't talk about variable, but entity.

It is a consequence of C design that we can convert only the values stored in
variables, others keep their type until their lives end, which is when the program's
execution ends.

Type conversion can be implicitly done or explicitly made. To be sure everyone is with
me here, I'll state that implicitly means not visibly and consciously written, compared to
explicitly that means specifically written in code, here.

Implicit type conversion

Sometimes, it is also called coercion. This happens when you don't specify anything
for the compiler that has to make an automatic conversion following its own basic
(but often smart enough) rules. The classic example is the conversion of a £1loat
value into an int value.

float myFloat = 12345.6789 ;
int myInt;
myInt = myFloat;

println (myInt); // displays 12345

I'm using the assignment operator (=) to put the content of myFloat into myInt.

It causes truncation of the f1loat value, that is, the remouval of the decimal part. You
have definitely lost something if you continue to work only with the myInt variable
instead of myFloat. It can be okay, but you have to keep it in mind.

Another less classic example is the implicit conversion of int type to float. int
doesn't have a decimal part. The implicit conversion to float won't produce
something other than a decimal part that equals zero. This is the easy part.

[80]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

But be careful, you