2024/05/21 05:55 1/2 Searching a Tree of Objects with Ling, Revisited

Inhaltsverzeichnis
Searching a Tree of Objects with Linqg, Revisitedccoooiii 1
Two types Of Tree Traversal ... 1
Tree to IEnumerable<T> EXeNSion MELNOAS ..ivvuiiiriii et e e e anas 2

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last

start:vi 2017;, dotr :tipps_tricks:searchingtreeofobjectswithling https://j lektronik.c iki php?id=start:visualstudio2017:prog ipps_tricks:searchingtreeofobjectswithling&rev=1655885540

update:
2022/06/22
10:12

https://jmz-elektronik.ch/dokuwiki/ Printed on 2024/05/21 05:55

2024/05/21 05:55 1/5 Searching a Tree of Objects with Ling, Revisited

Searching a Tree of Objects with Linq,
Revisited

A while back, | wrote about searching through a tree using ling to objects. That post was mostly
snippets of code about delegates, lambda’s, yield and how it applies to ling — more a technical
exploration than an example. So | thought I'd follow it up with concrete extension methods to make
virtually any tree searchable by Ling.

Linq, IEnumerable<T>, yield

All that is required to search a tree with Ling is creating a list of all nodes in the tree. Ling to Objects
can operate on IEnumerable<T>. Really, Linq to objects is a way of expressing operations
we’ve been doing forever in loops with if/else blocks. That means there isn’t any search magic
going on, it is a linear traversal of all elements in a set and examining each to determine whether it
matches our search criteria.

To turn a tree into a list of node we need to walk and collect all children of every node. A simple task
for a recursive list that carries along a list object to stuff every found node into. But there is a better
way, using yield to return each item as it is encountered. Now we don’t have to carry along a
collection. Iterators using yield implement a pattern in which a method can return more
than once. For this reason, a method using yield in C# must return an IEnumerable, so that the caller
gets a handle to an object it can traverse the result of the multiple return values.

IEnumerable is basically an unbounded set. This is also the reason why unlike collections, it does not
have a Count Property. It is entirely possible for an enumerator to return an infinite series of items.

Together IEnumerable<T> and yield are a perfect match for our problem, i.e. recursively walking a
tree of nodes and return an unknown number of nodes.

Two types of Tree Traversal

Depth First

In depth-first traversal, the algorithm will dig continue to dig down a nodes children until it reaches a
leaf node (a node without children), before considering the next child of the current parent node.

Breadth First

In breadth-first traversal, the algorithm will return all nodes at a particular depth first before
considering the children at the next level. l.e. First return all the nodes from level 1, then all nodes
from level 2, etc.

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last

;Sg;;gﬁm start:vi 2017: dotnetgrur :tipps._tricks:searchingtreeofobjectswithling https:/j lektronik.c ik php?id=start:visualstudio2017:progr ipps_tricks:searchingtreeofobjectswithling&rev=1655885540
10:12

Tree to IEnumerable<T> Extension methods

1. public static class TreeToEnumerableEx

2.

3.

4. public static IEnumerable<T> AsDepthFirstEnumerable<T=(this T
head, Func<T, IEnumerable<T>> childrenFunc

5.

6. yield head

7. foreach (var node in childrenFunc(head

8.

9. foreach (var child in AsDepthFirstEnumerable(node
childrenFunc

10.

11. yield child

12.

13.

14.

15.

16. public static IEnumerable<T-> AsBreadthFirstEnumerable<T->(this T
head, Func<T, IEnumerable<T>> childrenFunc

17.

18. yield head

19. var last head

20. foreach(var node in AsBreadthFirstEnumerable(head, childrenFunc

21.

22. foreach(var child in childrenFunc(node

23.

24. yield child

25. last child

26.

27. last.Equals(node)) yield break

28.

29.

30.

This static class provides two extension methods that can be used on any object, as long as it's
possible to express a function that returns all children of that object, i.e. the object is a node in some
type of tree and has a method or property for accessing a list of its children.

An Example

Let’s use a hypothetical Tree model defined by this Node class:

1. public class Node

https://jmz-elektronik.ch/dokuwiki/ Printed on 2024/05/21 05:55

2024/05/21 05:55 3/5 Searching a Tree of Objects with Ling, Revisited

15.
16.
17.
18.
19.
20.

private readonly List<Node> children new List<Node
public Node(int id

Id = id

public IEnumerable<Node> Children { get children
public Node AddChild(int id
var child = new Node(id

children.Add(child
child

public int Id { get; private set

Each node simply contains a list of children and has an Id, so that we know what node we're looking
at. The AddChild() method is a convenience method so we don’t expose the child collection and no
node can ever be added as a child twice.

The calling convention for a depth-first collection is:

1. IEnumerable<Node node.AsDepthFirstEnumerable(n n.Children

The lambda expression n = n.Children is the function that will return the children of a node. It simply
states given n, return the value of the Children property of n. A simple test to verify that our
extension works and to show us using the extension in linq looks like this:

coNO UL B WN K

each

x.Ch

Test
public void DepthFirst

// build the tree in depth-first order
int id

var depthFirst new Node(id

var df2 = depthFirst.AddChild id

var df3 = df2.AddChild id

var df4 = df2.AddChild id

var df5 depthFirst.AddChild id

var dfé = df5.AddChild id

var df7 = df5.AddChild id

// find all nodes in depth-first order and select just the Id of
node

var IDs from node in depthFirst.AsDepthFirstEnumerable(x
ildren

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last

?833585/215‘3“ i 2017 dotr ipps._tricks:searching tswithling php?id=start:visualstudio2017:prog ipps_tricks:searchingtreeofobjectswithling&rev=1655885540

10:12

16. select node.Id

17.

18. // confirm that this list of IDs is in depth-first order

19. Assert.AreEqual (new int IDs.ToArray
20.

For breadth-first collections, the calling convention is:

1. IEnumerable<Node node.AsBreadthFirstEnumerable(n n.Children

Again, we can test that the extension works like this:

1. Test

2. public void BreadthFirst

3.

4, // build the tree in breadth-first order

5. var id

6. var breadthFirst new Node(id

7. var bf2 breadthFirst.AddChild id

8. var bf3 breadthFirst.AddChild id

9. var bf4 bf2.AddChild id

10. var bf5 bf2.AddChild id

11. var bf6 bf3.AddChild id

12. var bf7 bf3.AddChild id

13.

14. // find all nodes in breadth-first order and select just the Id of
each node

15. var IDs from node in breadthFirst.AsBreadthFirstEnumerable (x
X.Children

16. select node.Id

17.

18. // confirm that this list of IDs is in depth-first order

19. Assert.AreEqual(new int IDs.ToArray

20.

Searching Trees

The tree used in the example is of course extremely simple, i.e. it doesn’t even have any worthwhile
data to query attached to a node. But these extension methods could be used on a node of any kind
of tree, allowing the full power of Ling, grouping, aggregation, sorting, projection, etc. to be used on
the tree.

As a final note, you may wonder, why bother with depth-first vs. breadth first? After all, in the end we
do examine every node! There is however one particular case where the choice of algorithm can be
very important: You are looking for one match or a particular number of matches. Since we are using
yield, we can terminate the traversal at any time. Using the FirstOrDefault() extension on our Linq

https://jmz-elektronik.ch/dokuwiki/ Printed on 2024/05/21 05:55

2024/05/21 05:55 5/5 Searching a Tree of Objects with Ling, Revisited

expression, the traversal would stop as soon as one match is found. And if have any knowledge where
that node might be in the tree, the choice of search algorithm can be a significant performance factor.

From:
https://jmz-elektronik.ch/dokuwiki/ - Biicher & Dokumente

Permanent link: %
https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:progr i dotnetgrundl. ipps_tricks:searchingtreeofobjectswithlinq&rev=1655885540 =

Last update: 2022/06/22 10:12

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

https://jmz-elektronik.ch/dokuwiki/
https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks:searchingtreeofobjectswithlinq&rev=1655885540

	Inhaltsverzeichnis
	Searching a Tree of Objects with Linq, Revisited
	Two types of Tree Traversal
	Depth First
	Breadth First
	Tree to IEnumerable<T> Extension methods
	An Example
	Searching Trees

