2026/01/31 19:07 1/2 Tipps und Tricks

Inhaltsverzeichnis
TIPPS UNA THICKS ...t e e e e e e e e e e e b b e e e e e s nb b e e e e e e s annnnreeas 1
ContextSwitchDeadlock erkennen und umgehenccccccoiiiiiiiiiiiiiiii s 1
Fehlermeldung Visual STUdio 2019eeuiiiiiiiiii e 1
EPKIQIUNG ottt e e e e e e e e e e e bbb e ettt e e e e e e e e e e e e e r e e e e e e eeas 2
(01U o Lo TP PP TP PPPPPTTTPPPPPRRTIN 2
In Visual Studio 2019 zusatzliche Debug Informationen auschalten 2
Zusatzliche Debug INfOrmationenuuuiiiiiiiiii e 2
Window und Screen Mouse Koordinaten ermittelncccccocccccici, 2
WPF, DependencyProperty.Register() or .RegisterAttachedccceeeeiiieeennn. 3
How to Test Your Internal Classes in C# (NUNIL)coooiiiiiiiiiiie e 4
Working with Checkboxes in the WPF TreeView / Arbeiten mit Kontrollkastchen in der
WP TrEEVIBW ...ooiiiiiiiiiiiiiii ittt ettt e ettt e e e e e e e e e e s s s e e bbb bbb et e e et e e e e e eeeeennennnnns 8

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last
update:
2022/09/23
06:40

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663908009

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/31 19:07

2026/01/31 19:07 1/21 Tipps und Tricks

Tipps und Tricks

Hier finden Sie verschiedene Tipps und Tricks rund um C#, .NET und Visual Studio (Verschieden
Versionen).

ContextSwitchDeadlock erkennen und umgehen

Fehlermeldung Visual Studio 2019

Message

ContextSwitchDeadlock wurde erkannt. Message: Die CLR konnte 60 Sekunden lang keinen Ubergang
vom COM-Kontext 0x2¢c32f90 zum COM-Kontext 0x2c331e0 durchflhren. Der Thread, der Besitzer
des Zielkontexts/-apartments ist, wartet entweder, ohne Meldungen zu verschieben, oder verarbeitet
eine auBerst lang dauernde Operation, ohne Windows-Meldungen zu verschieben. Eine solche
Situation beeintrachtigt in der Regel die Leistung und kann sogar dazu fihren, dass die Anwendung
nicht mehr reagiert oder die Speicherauslastung immer weiter zunimmt. Zur Vermeidung dieses
Problems sollten alle STA-Threads (Singlethread-Apartment) primitive Typen verwenden, die beim
Warten Meldungen verschieben (z.B. CoWaitForMultipleHandles), und bei lange dauernden
Operationen generell Meldungen verschieben.

Diese tritt beim abfragen von Fenstertitel der Anwendungen auf, der Code dazu:

1. public string Text
2
3 get
4.
5. try
6
7 StringBuilder title = new StringBuilder
8. UnManagedMethods.GetWindowText (this.hWnd, title, title.Capacity
9. title.ToString
10.
11. catch "
12.
13.
14.
15. private class UnManagedMethods
16.
17. DllImport("user32", CharSet = CharSet.Auto
18. public extern static int GetWindowText (IntPtr hWnd, StringBuilder
1pString int cch
19.
20.

Der code wird in Visual Studio 2019 im Debug Modus ausgefuhrt. Wie kann man dieses ,,hangen
bleiben“ erkennen und abbrechen, gibt es da GUberhaupt eine Mdglichkeit?

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last
update:
2022/09/23
06:40

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663908009

Erklarung

Wenn man im Debug Modus anhalt, dann werden auch keine Windows-Nachrichten mehr verarbeitet.
Das heilst, die COM-Komponente verarbeitet eine Windows-Nachricht, die verursacht, dass in deinen
Code gesprungen wird. Sollte dann binnen 60 Sekunden keine Ruckantwort kommen, dann erhalst Du
diese Fehlermeldung, weil die COM Komponente keine weiteren Nachrichten verarbeiten kann
derweil.

Losung

Einfach die Exception in den Visual Studio Einstellungen abschalten.

In Visual Studio 2019 zusatzliche Debug Informationen
auschalten

Zusatzliche Debug Informationen

Rename Layout E Die Standardeinstellungen in Visual
Studio 2019 zeigt oben auf jedem WPF
- Fenster zusatziche Tool zum debugen des
Enter New NE" Programm an. Nachteil ist, dass damit
New Layout auch darunterliegende Komponenten
verdeckt werden. Mit folgenden Schritten
lasst sich das auch ausschalten:

CK | Cancel

English Version : Tools - Options - Debugging - General -» Enable Ul Debugging Tools for XAML
Deutsche Version : Extras - Optionen -» Debugging = Allgemein = Ul-Debugtool fur XAML aktivieren

Setzen oder entfernen Sie einfach das Hackchen.

Window und Screen Mouse Koordinaten ermitteln

Wie wir alle wissen gibt es Methoden die uns die Mausposition relativ zu anderen controls zurlickgibt.
Doch manchmal mdchte wir auch die Mausposition ausserhalb des Fensters wissen. Diese
Kurzanleitung soll einen kleinen Tipp sein.

1. #Mit folgenden zwei Methoden lasst sich die Mausposition relativ zu
einem control ermitteln:

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/31 19:07

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Adotnetgrundlagen%3Atipps_tricks&media=start:visualstudio2017:programmieren:tipps_tricks:wpf_debug_windows_tools.png

2026/01/31 19:07 3/21 Tipps und Tricks

2. Mouse.GetPosition(IInputElement relativeTo
3. MouseEventArgs.GetPosition(IInputElement relativeTo).

Demo Code

Bei diesem Beispiel wird die Mausposition auf der obersten Titelleiste (WindowTitle) angezeigt. Die
Koordination sind innerhalb des Fensters auf die Zeichnungsflache bezogen und ausserhalb des
Fensters werden die Screen Koordinaten angezeigt.

1. namespace CorelLoader.Views

2

3

4.

5. /// <summary>

6 /// Interaction logic for Main.xaml

7 /// </summary>

8. public partial class Main : Window

9.

10. public Main(object datacontex

11.

12. InitializeComponent

13. DataContext = datacontex

14.

15. CompositionTarget.Rendering OnRendering

16.

17.

18. private void OnRendering(object sender, EventArgs e

19.

20. var x = Mouse.GetPosition(this).X

21. var y = Mouse.GetPosition(this).Y

22. this.Title = Math.Round(y .ToString " !
Math.Round (x .ToString

23.

24.

25.

Der Event OnRendering() wird vor dem Zeichnen des WPF Fenster ausgefuhrt. Dieses Beispiel ist
eine verkurzte Abschrift und wurde zur Sicherung kopiert.

WPF, DependencyProperty.Register() or .RegisterAttached

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

https://getandplay.github.io/2019/05/13/How-does-WPF-application-get-mouse-position-when-mouse-stay-outside-window/
https://getandplay.github.io/2019/05/13/How-does-WPF-application-get-mouse-position-when-mouse-stay-outside-window/

Last
update:
2022/09/23
06:40

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663908009

English

Deutsch

| assume you meant
DependencyProperty.Register and
DependencyProperty.RegisterAttached.
DependencyProperty.Register is used to register
normal DependencyProperty. You can see those
as just regular properties, with the added twist
that they can take part in WPF's DataBinding,
animations etc. In fact, they are exposed as
normal property (with the get and set accessors)
on top of the untyped
DependencyObject.SetValue / GetValue. You
declare those as part of your type. Attached
properties on the other hand are different. They
are meant as an extensibility system. If you have
ever used Extenders in Windows Forms, they are
kind of similar. You declare them as part of a
type, to be used on another type. They are used
a lot for layout-related information. For example,
Canvas needs Left/Top coordinates, Grid needs a
Row and a Column, DockPanel needs a Dock
information etc. It would be a mess if all of this
had to be declared on every Control that can be
layouted. So they are declared on the
corresponding panel, but used on any Control.
You can use the same thing to attach any
information to a DependencyObject if you need
to. It can come in handy to just declare a piece of
information that you can set in xaml just to be
used later in a style for an existing class for
example. So those two kind of
DependencyProperty serve a very different
purpose. Regular properties (registered through
Register()) are used just like normal properties
as part of the interface of your type. Attached
properties (registered through
RegisterAttached()) are used as an extensibility
point on existing classes. Hope that clarifies it a
bit.

Ich nehme an, Sie meinten
DependencyProperty.Register und
DependencyProperty.RegisterAttached.
DependencyProperty.Register wird verwendet, um
normale DependencyProperty zu registrieren. Sie
kdnnen diese als ganz normale Eigenschaften
betrachten, mit dem zusatzlichen Vorteil, dass sie
an WPFs DataBinding, Animationen usw.
teilnehmen kdénnen. In der Tat sind sie als normale
Eigenschaft (mit den Get- und Set-Accessoren) auf
dem untypisierten DependencyObject.SetValue /
GetValue ausgesetzt. Sie deklarieren diese als Teil
Ihres Typs. Angehangte Eigenschaften hingegen
sind anders. Sie sind als ein System zur
Erweiterung gedacht. Wenn Sie schon einmal
Extender in Windows Forms verwendet haben, sind
sie sehr ahnlich. Sie werden als Teil eines Typs
deklariert, um in einem anderen Typ verwendet zu
werden. Sie werden haufig fur layoutbezogene
Informationen verwendet. Zum Beispiel braucht
Canvas Links/Oben-Koordinaten, Grid braucht eine
Row und eine Column, DockPanel braucht eine
Dock-Information usw. Es ware unubersichtlich,
wenn all dies fur jedes Steuerelement, das fur das
Layout verwendet werden kann, deklariert werden
musste. Also werden sie auf dem entsprechenden
Panel deklariert, aber auf jedem Control
verwendet. Sie kdnnen dasselbe tun, um beliebige
Informationen an ein DependencyObject
anzuhangen, wenn Sie es brauchen. Es kann sehr
nutzlich sein, eine Information zu deklarieren, die
man in xaml einstellen kann, um sie spater in
einem Stil flr eine bestehende Klasse zu
verwenden, zum Beispiel. Diese beiden Arten von
DependencyProperty dienen also einem sehr
unterschiedlichen Zweck. Regulare Eigenschaften
(registriert durch Register()) werden wie normale
Eigenschaften als Teil der Schnittstelle lhres Typs
verwendet. Angehangte Eigenschaften (registriert
durch RegisterAttached()) werden als
Erweiterungspunkt fur bestehende Klassen
verwendet. Ich hoffe, das macht es ein wenig
klarer.

--Denis Troller

How to Test Your Internal Classes in C# (NUnit)

How to test internal classes? (microsoft,) 2019-12-

10 by Johnny Graber

https://jmz-elektronik.ch/dokuwiki/

Printed on 2026/01/31 19:07

https://stackoverflow.com/questions/910579/dependencyproperty-register-or-registerattached#914030
https://improveandrepeat.com/2019/12/how-to-test-your-internal-classes-in-c/

2026/01/31 19:07 5/21 Tipps und Tricks

One of the most important concepts of object-oriented design is encapsulation. You try to hide all the
internal things of a class from the other developers and only offer them a subset of functionality to
use. You can achieve this by setting an appropriate access modifier for your methods and classes:

e public: The type or member can be accessed by any other code in the same assembly or
another assembly that references it.

e private: The type or member can be accessed only by code in the same class or struct.

e protected: The type or member can be accessed only by code in the same class, or in a class
that is derived from that class.

e internal: The type or member can be accessed by any code in the same assembly, but not
from another assembly.

e protected internal: The type or member can be accessed by any code in the assembly in
which it is declared, or from within a derived class in another assembly. (as in protected OR
internal)

 private protected: The type or member can be accessed only within its declaring assembly,
by code in the same class or in a type that is derived from that class. (as in private OR
protected)

Public and private are the two most used access modifiers. You find them in all the examples, they
are straight forward to use and do exactly what you expect. They are a great help to manage access
to the methods in your classes and the classes themselves.

If we look at bigger parts of our application, we use code from different assemblies or NuGet
packages. Those distribution formats have their own boundaries that you can use to enforce
encapsulation. Public and private access modifiers are again a great help. However, over the years |
appreciated the internal access modifier more and more.

Benefits of the internal access modifier

There is always that code that you need but has no place to go. It is not a class on its own and it does
not fit to any other. At some point you stop searching for the right place and put it into a class called
MyHelper. That code can’t be private, then many of your classes need them. And you do not want to
make it public, then this code should not be called from outside your assembly.

The internal access modifier is exactly made for such use cases. By declaring the class or just a few
methods as internal, you can access them from everywhere in your assembly but not from outside. All
you need to do is to write internal instead of public or private:

1. public class MyHelper

2

3 internal string InternalMethod

4.

5. "should only be visible to the class itself & tests"
6

7

8 public string PublicMethod

9.

10. "Everyone can call this method"
11.

12.

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last

3823585/23 start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663908009

06:40

13. private string PrivateMethod

14.

15. "you should not be able to call this directly"
16.

17.

The users of your assembly or NuGet package do not know that this helper method exist. That allows
you to freely move that code around to a better location or refactor it until you find a more fitting
abstraction. All that without the need to change code outside your assembly - then no one else can
call it directly.

var helper = new MyHelper();
helper.|

PublicMethod string
Equals

GetHashCode nt
GetType

O G GO

How to test internal methods and classes?

That helper code you marked with internal is most often important. Therefore, you should write
extensive tests for those classes and methods. But how can you do that when you can’t access that
code from outside your assembly?

The .NET Framework offers the InternalsVisibleTo attribute to specify which other assemblies can
access the internal methods and classes inside this assembly. All you need to do is to add this
attribute to the AssemblyInfo.cs file and pass the name of your test assembly to the constructor:

1. [assembly: InternalsVisibleTo("Logic.Tests"

When you put this attribute to the AssemblylInfo.cs file, then all internal methods can be accessed by
code inside the Logic.Tests assembly. To test your internal code this behaviour is exactly what you
want. If this is too much, you can add this attribute in a specific class and only allow access to the
internal methods of this class.

As soon as you recompile your assembly, the code in your test assembly can access your internal
methods:

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/31 19:07

2026/01/31 19:07 7/21 Tipps und Tricks

[Test]
public void InternalMethodCanBeUsed()

{

var testee = new MyHelper();

testee.
5+ InternalMethod string
@ PublicMethod string
¥ Equals bool
¥ GetHashCode int
¥ GetType Type

.Net Core

In .Net Core you do not have an AssemblylInfo.cs file. You can add one with the Add New Item dialog
and set the attribute there in the same way you would do that in the .Net Full Framework and get
exactly the same benefits.

Add New Item - Logic

T
T
iw

4 |nstalled Sort by: | Default v

i =C#
4 Visual C# Items Dl Assembly Information File Visual C# ltems
WPF

Code
Data

General

.Net Standard project

As pointed out by Miguel Alho in the comments, you can add an IltemGroup in your *.csproj file to get
the same effect. For that, paste this code as the last block before the closing project tag:

1. <ItemGroup>

2. <AssemblyAttribute
Include="System.Runtime.CompilerServices.InternalsVisibleTo">

3. < Parameterl-Logic.Tests</ Parameterl-

4. </AssemblyAttribute-

5. </ItemGroup>

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last
update:
2022/09/23
06:40

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663908009

Conclusion

Use the internal access modifier the next time you have helper code that you need but no one else
should call. This little keyword will help you to hide your mess inside your assembly and still allows
you to write tests. With internal you get the best of both worlds without breaking encapsulation.

2019-12-10 by Johnny Graber

Working with Checkboxes in the WPF
TreeView / Arbeiten mit Kontrollkastchen in
der WPF TreeView

Introduction Einfuhrung

This article reviews a WPF TreeView whose itemsDieser Artikel beschreibt eine WPF TreeView,
contain checkboxes. Each item is bound to a deren Elemente Kontrollkastchen enthalten.
ViewModel object. When a ViewModel object’s Jedes Element ist an ein ViewModel Objekt
check state changes, it applies simple rules to gebunden. Wenn sich der Prufstatus eines

the check state of its parent and child items. ViewModel-Objekts andert, wendet es einfache
This article also shows how to use the attached Regeln auf den Prifstatus seiner

behavior concept to turn a TreeViewltem into a Ubergeordneten und untergeordneten Elemente

virtual ToggleButton, which helps make the an. Dieser Artikel zeigt auch, wie man das
TreeView's keyboard interaction simple and angehangte Verhaltenskonzept verwenden kann,
intuitive. um ein TreeViewltem in einen virtuellen

ToggleButton zu verwandeln, der hilft, die
This article assumes that the reader is already Tastaturinteraktion des TreeViews einfach und

familiar with data binding and templates, intuitiv zu gestalten.

binding a TreeView to a ViewModel, and

attached properties. Dieser Artikel geht davon aus, dass der Leser
bereits mit Datenbindung und Templates, der

Background Bindung eines TreeViews an ein ViewModel und

_ . angehangten Eigenschaften vertraut ist.
It is very common to have a TreeView whose

items are checkboxes, such as when presenting Hintergrund

the user with a hierarchical set of options to

select. In some Ul platforms, such as WinForms, Es ist sehr tblich, einen TreeView zu haben,
the standard TreeView control offers built-in dessen Elemente Kontrollkastchen sind, z.B.
support for displaying checkboxes in its items. wenn dem Benutzer ein hierarchischer Satz von
Since element composition and rich data binding Optionen zur Auswahl prasentiert wird. In

are two core aspects of WPF, the WPF TreeView einigen Ul-Plattformen, wie z.B. WinForms, bietet
does not offer intrinsic support for displaying das Standard-TreeView-Steuerelement
checkboxes. It is very easy to declare a integrierte UnterstUtzung flr die Anzeige von
CheckBox control in a TreeView’s ItemTemplate Kontrollkastchen in seinen Elementen. Da

and suddenly every item in the tree contains a Elementkomposition und reichhaltige

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/31 19:07

https://improveandrepeat.com/2019/12/how-to-test-your-internal-classes-in-c/

2026/01/31 19:07 9/21 Tipps und Tricks

CheckBox. Add a simple {Binding} expression to

the IsChecked property, and suddenly the check Datenbindung zwei Kernaspekte von WPF sind,
state of those boxes is bound to some property bietet das WPF TreeView keine integrierte

on the underlying data objects. It would be Unterstltzung fur die Anzeige von

superfluous, at best, for the WPF TreeView to Kontrollkastchen. Es ist sehr einfach, ein
have an API specific to displaying checkboxes in CheckBox-Steuerelement im ltemTemplate eines

its items. TreeViews zu deklarieren und plotzlich enthalt
jedes Element im Baum eine CheckBox. Fligen
The Devil is in the Details Sie der IsChecked-Eigenschaft einen einfachen
{Binding}-Ausdruck hinzu, und plétzlich ist der
This sounds too good to be true, and it is. Priifstatus dieser Boxen an eine Eigenschaft der
Making the TreeView “feel right,” from a zugrunde liegenden Datenobjekte gebunden. Es

keyboard navigation perspective, is not quite as ware bestenfalls (iberfliissig, dass die WPF
simple. The fundamental problem is that as you TreeView eine API speziell fiir die Anzeige von

navigate the tree via arrow keys, a Checkboxen in ihren Elementen hat.
TreeViewltem will first take input focus, and then

the CheckBox it contains will take focus upon theDer Teufel steckt im Detail

next keystroke. Both the TreeViewltem and

CheckBox controls are focusable. The resultis ~ Das klingt zu schon, um wahr zu sein, und das

that you must press an arrow key twice to ist es auch. Den TreeView aus der Perspektive

navigate from item to item in the tree. Thatis ~ der Tastaturnavigation ,richtig” zu machen, ist
definitely not an acceptable user experience, ~ nhicht ganz so einfach. Das grundsatzliche

and there is no simple property that you can set Problem ist, dass ein TreeViewltem beim

to make it work properly. | have already brought Navigieren durch den Baum mit den Pfeiltasten

this issue to the attention of a certain key zuerst den Eingabefokus erhalt und dann die
member on the WPF team at Microsoft, so they CheckBox, die es enthalt, beim nachsten
might address it in a future version of the Tastendruck den Fokus erhalt. Sowohl das
platform. TreeViewltem- als auch das CheckBox-
Steuerelement sind fokussierbar. Das Ergebnis
Functional Requirements ist, dass Sie eine Pfeiltaste zweimal dricken
mussen, um im Baum von einem Element zum
Before we start to examine how this demo anderen zu navigieren. Das ist definitiv keine

program works, first we will review what it does. akzeptable Benutzererfahrung, und es gibt keine

Here is a screenshot of the demo application in einfache Eigenschaft, die Sie einstellen kénnen,

action: damit es richtig funktioniert. Ich habe bereits ein
bestimmtes Mitglied des WPF-Teams bei
Microsoft auf dieses Problem aufmerksam
gemacht, damit es in einer zukUlnftigen Version
der Plattform behoben werden kann.

Funktionale Anforderungen

Bevor wir untersuchen, wie dieses
Demoprogramm funktioniert, sollten wir uns
zunachst ansehen, was es tut. Hier ist ein
Screenshot der Demoanwendung in Aktion:

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last
update:

2022/09/23 start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663908009

06:40

F o

| TreeView with CheckBoxes [o] @[3

4 [Elweapons

4 [“IBlades
[“]Dagger
[“IMachete
[¥]sword

4 [®]Vehicles
[¥] Apache Helicopter
[]Ssubmarine
[“ITank

« [1Guns
[Jak 47
[]Beretta
uazi

B | TreeView with CheckBoxes

4 [E]weapons

== %

4 [V]Blades
[¥]Dagger
[¥IMachete
[¥]sword

4 [m]vehicles
[¥] Apache Helicopter
[]submarine
[Tank

4 [1Guns
[Jak 47
[IBeretta
Cuzi

Now let’s see what the functional requirements Schauen wir uns nun die funktionalen

are:

1. Requirement : Each item in the tree must
display a checkbox that displays the text
and check state of an underlying data
object.

2. Requirement : Upon an item being
checked or unchecked, all of its child items
should be checked or unchecked,
respectively.

3. Requirement : If an item’s descendants do
not all have the same check state, that
item’s check state must be
‘indeterminate.’

4. Requirement : Navigating from item to
item should require only one press of an
arrow key.

5. Requirement : Pressing the Spacebar or
Enter keys should toggle the check state
of the selected item.

6. Requirement : Clicking on an item’s
checkbox should toggle its check state,
but not select the item.

7. Requirement : Clicking on an item’s
display text should select the item, but not
toggle its check state.

8. Requirement : All items in the tree should
be in the expanded state by default.

| suggest you copy those requirements and
paste them into your favorite text editor, such as
Notepad, because we will reference them

1.

Anforderungen an:

Anforderung : Jedes Element in der
Baumstruktur muss ein Kontrollkastchen
enthalten, das den Text und den
Kontrollstatus eines zugrunde liegenden
Datenobjekts anzeigt.

. Anforderung : Wenn ein Element

angekreuzt oder nicht angekreuzt wird,
sollten alle seine untergeordneten
Elemente angekreuzt bzw. nicht
angekreuzt werden.

. Anforderung : Wenn die Nachkommen

eines Eintrags nicht alle den gleichen
Prufstatus haben, muss der Prufstatus
dieses Eintrags ,, unbestimmt” sein.
Anforderung : Das Navigieren von Element
zu Element sollte nur einen einzigen Druck
auf eine Pfeiltaste erfordern.

. Anforderung : Das Drucken der Leertaste

oder der Eingabetaste sollte den
PrUfstatus des ausgewahlten Eintrags
umschalten.

Anforderung : Ein Klick auf das
Kontrollkastchen eines Eintrags soll den
Kontrollstatus umschalten, aber den
Eintrag nicht auswahlen.

. Anforderung : Das Anklicken des

Anzeigetextes eines Eintrags soll den
Eintrag auswahlen, aber nicht seinen
Markierungsstatus umschalten.
Anforderung : Alle Elemente in der

https://jmz-elektronik.ch/dokuwiki/

Printed on 2026/01/31 19:07

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Adotnetgrundlagen%3Atipps_tricks&media=start:visualstudio2017:programmieren:tipps_tricks:screenshot.png
https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Adotnetgrundlagen%3Atipps_tricks&media=start:visualstudio2017:programmieren:tipps_tricks:screenshot.png

2026/01/31 19:07

11/21 Tipps und Tricks

throughout the rest of the article by number.
Putting the Smarts in a ViewModel

As explained in my ‘Simplifying the WPF
TreeView by Using the ViewModel Pattern’

Baumstruktur sollten sich standardmaRig
im erweiterten Zustand befinden.

Ich schlage vor, Sie kopieren diese
Anforderungen und flgen sie in lhren

article, the TreeView was practically designed to bevorzugten Texteditor ein, z. B. in Notepad, da

be used in conjunction with a ViewModel. This
article takes that idea further, and shows how
we can use a ViewModel to encapsulate
application-specific logic related to the check
state of items in the tree. In this article, we will
examine my FooViewModel class, which the
following interface describes:

1. interface IFooViewModel
INotifyPropertyChanged

2.
3. List<FooViewModel> Children
get

4, bool?” IsChecked { get; set

5. bool IsInitiallySelected
get

6. string Name { get

7.

The most interesting aspect of this ViewModel

class is the logic behind the IsChecked property.

This logic satisfies Requirements 2 and 3, seen
previously. The FooViewModel's IsChecked logic
is below:

1. /// <summary>

2. /// Gets/sets the state of the
associated UI toggle (ex.
CheckBox) .

3. /// The return value 1is
calculated based on the check
state of all

4. /// child FooViewModels.
Setting this property to true
or false

5. /// will set all children to
the same check state, and
setting it

6. /// to any value will cause the
parent to verify its check
State.

wir sie im weiteren Verlauf des Artikels
nummerisch referenzieren werden.

Die Intelligenz in ein ViewModel packen

Wie in meinem Artikel 'Simplifying the WPF
TreeView by Using the ViewModel Pattern'
(Vereinfachung der WPF-TreeView durch
Verwendung des ViewModel-Musters) erlautert,
wurde die TreeView praktisch dafur entwickelt,
in Verbindung mit einem ViewModel verwendet
zu werden. Dieser Artikel fihrt diese Idee weiter
und zeigt, wie wir ein ViewModel verwenden
kdénnen, um anwendungsspezifische Logik in
Bezug auf den Prifstatus von Elementen im
Baum zu kapseln. In diesem Artikel werden wir
meine FooViewModel-Klasse untersuchen, die
durch die folgende Schnittstelle beschrieben
wird:

1. interface IFooViewModel
INotifyPropertyChanged

2.
3. List<FooViewModel> Children
get

4. bool” IsChecked | get; set

5. bool IsInitiallySelected
get

6. string Name { get

7.

Der interessanteste Aspekt dieser ViewModel-
Klasse ist die Logik hinter der Eigenschaft
IsChecked. Diese Logik erfullt die Anforderungen
2 und 3, die zuvor gesehen wurden. Die
IsChecked-Logik des FooViewModel ist unten
dargestellt:

1. ///Ruft den Zustand des
zugehorigen UI-Toggles (z.B.
CheckBox) ab bzw. setzt ihn.

2. ///Der Rickgabewert wird auf

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last
update:
2022/09/23
06:40

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663908009

7.
8.
el
10.
11.

12.
13.
14,

15.
16.
17.
18.
19.
20.
21.

22.

23.
24,

25.

26.
27.

28.
29.
30.
31.
32.
33.

34.
35.

36.
37.
38.
39.
40.

41.
42,

/// </summary>

public bool? IsChecked
get _isChecked
set

this.SetIsChecked(value, true
true

void SetIsChecked(bool? value
bool updateChildren, bool
updateParent
value _isChecked
_isChecked = value
updateChildren

_isChecked.HasValue
this.Children.ForEach(c
c.SetIsChecked(isChecked
true, false

updateParent
null

_parent

_parent.VerifyCheckState

this.OnPropertyChanged("IsCheck
e(jll

void VerifyCheckState
bool? state null

int i 0; i

this.Children.Count i

bool” current
this.Children[i].IsChecked
i (0]
state current
state
current

state null

O 00 N O

11.
12.

13.
14,
15.
16.
17.
18.
19.

20.

21.
22.

23.

24.
25.

26.
27.
28.
29.
30.
31.

der Grundlage des Prifstatus
aller untergeordneten

. ///FooViewModelle berechnet.

Wenn diese Eigenschaft auf true
oder false gesetzt wird,

. ///erhalten alle

untergeordneten Modelle den
gleichen Prifstatus,

. ///und wenn sie auf einen

beliebigen Wert gesetzt wird,
Uberprift das (bergeordnete
Modell seinen Prifstatus.

. public bool? IsChecked

get _isChecked

set
this.SetIsChecked(value, true
true

void SetIsChecked(bool? value
bool updateChildren, bool
updateParent
value _isChecked
_isChecked = value
updateChildren

_isChecked.HasValue
this.Children.ForEach(c
c.SetIsChecked(isChecked
true, false

updateParent
null

__parent

_parent.VerifyCheckState

this.OnPropertyChanged("IsCheck
edll

void VerifyCheckState

bool” state null
int i 0: i
this.Children.Count i

https://jmz-elektronik.ch/dokuwiki/

Printed on 2026/01/31 19:07

2026/01/31 19:07 13/21 Tipps und Tricks
43. break
44 . 32.
45 . 33. bool? current
46. this.SetIsChecked(state this.Children[1i].IsChecked
false, true 34. i
47. 35.
36. state current
37.
This strategy is specific to the functional 38. state
requirements | imposed upon myself. If you have current
different rules regarding how and when items 39.
should update their check state, simply adjust 40. state null
the logic in those methods to suit your needs. 41. break
TreeView Configuration jg
44 , this.SetIsChecked(state

Now it is time to see how the TreeView is able to
display checkboxes and bind to the ViewModel.
This is entirely accomplished in XAML. The
TreeView declaration is actually quite simple, as
seen below:

1. <TreeView

2. X:Name="tree"

3.
ItemContainerStyle="{StaticReso
urce TreeViewItemStyle}"

4, ItemsSource="{Binding
Mode=0neTime}"

5. ItemTemplate="{StaticResource
CheckBoxItemTemplate}"

6.

7. code

8. The TreeView'’'s ItemsSource
property is implicitly bound to
its DataContext, which inherits
a List<FooViewModel> from the
containing window. That list
only contains one ViewModel
object, but it is necessary to
put it into a collection
because ItemsSource is of type
IEnumerable.

9.

10. TreeViewItem is a container of

visual elements generated by

the ItemTemplate. In this demo

we assign the following

HierarchicalDataTemplate to the

tree's ItemTemplate property:
11.

false, true
45,

Diese Strategie ist spezifisch fur die funktionalen
Anforderungen, die ich mir selbst auferlegt habe.
Wenn Sie andere Regeln haben, wie und wann
Elemente ihren Prifstatus aktualisieren sollten,
passen Sie die Logik in diesen Methoden einfach
an lhre Bedurfnisse an.

TreeView Konfiguration

Nun ist es an der Zeit zu sehen, wie die
TreeView in der Lage ist, Kontrollkastchen
anzuzeigen und an das ViewModel zu binden.
Dies wird vollstandig in XAML realisiert. Die
TreeView-Deklaration ist eigentlich recht
einfach, wie unten zu sehen ist:

1. <TreeView

2. x:Name="tree"

3.
ItemContainerStyle="{StaticReso
urce TreeViewItemStyle}"

4. ItemsSource="{Binding

Mode=0neTime}"

5. ItemTemplate="{StaticResource
CheckBoxItemTemplate}"

6.

7. code

8. The TreeView’'s ItemsSource

property is implicitly bound to
its DataContext, which inherits
a List<FooViewModel> from the

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last
update:
2022/09/23
06:40

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663908009

12.

<code C#
[enable line numbers="true", hig
hlight lines extra="0,"]>

containing window. That list
only contains one ViewModel
object, but it is necessary to

13. <HierarchicalDataTemplate put it into a collection
14. x:Key="CheckBoxItemTemplate" because ItemsSource is of type
15. ItemsSource="{Binding IEnumerable.
Children, Mode=0neTime}" 9.
16. > 10. TreeViewItem is a container of
17. <StackPanel visual elements generated by
Orientation="Horizontal"> the ItemTemplate. In this demo
18. <!-- These elements are we assign the following
bound to a FooViewModel object. HierarchicalDataTemplate to the
--> tree's ItemTemplate property:
19. <CheckBox 11.
20. Focusable="False" 12. <code C#
21. IsChecked="{Binding [enable line numbers="true",hig
IsChecked}" hlight lines extra="0,"]>
22. 13. <HierarchicalDataTemplate

VerticalAlignment="Center" 14. x:Key="CheckBoxItemTemplate"
23. /> 15. ItemsSource="{Binding
24. <ContentPresenter Children, Mode=0neTime}"
25. Content="{Binding Name, 16. >
Mode=0neTime}" 17. <StackPanel
26. Margin="2,0" Orientation="Horizontal">
27. /> 18. <!-- These elements are
28. </StackPanel> bound to a FooViewModel object.
29. </HierarchicalDataTemplate> -->
19. <CheckBox
20. Focusable="False"
There are several points of interest in that 21. IsChecked="{Binding
template. The template includes a CheckBox IsChecked}"
whose Focusable property is set to false. This 27

prevents the CheckBox from ever receiving input

VerticalAlignment="Center"

focus, which assists in meeting Requirement 4. 53 />
You might be wondering how we will be ableto 5,4 <ContentPresenter
satisfy Requirement 5 if the CheckBox never has 55 Content="{Binding Name

input focus. We will address that issue later in Mode=OneTime}"
this article, when we examine how to attach the 5g Margin="2,0"
behavior of a ToggleButton to a TreeViewltem. 27. />
28. StackPanel
The CheckBox’s IsChecked property is bound to 29 </;ier:ichizglgataTemplat@

the IsChecked property of a FooViewModel

object, but notice that its Content property is not

set to anything. Instead, there is a
ContentPresenter directly next to it, whose
Content is bound to the Name property of a
FooViewModel object. By default, clicking

anywhere on a CheckBox causes it to toggle its jemals den Eingabefokus erhalt, was zur

check state. By using a separate

In dieser Vorlage gibt es mehrere interessante
Punkte. Die Vorlage enthalt eine CheckBox,
deren Eigenschaft Focusable auf false gesetzt
ist. Dadurch wird verhindert, dass die CheckBox

Erfallung von Anforderung 4 beitragt. Sie fragen

ContentPresenter, rather than setting the
CheckBox’s Content property, we can avoid that

sich vielleicht, wie wir die Anforderung 5 erfullen

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/31 19:07

2026/01/31 19:07 15/21 Tipps und Tricks

default behavior. This helps us satisfy

Requirements 6 and 7. Clicking on the box konnen, wenn die CheckBox nie den

element in the CheckBox will cause its check Eingabefokus erhalt. Wir werden dieses Problem
state to change, but clicking on the neighboring spater in diesem Artikel behandeln, wenn wir
display text will not. Similarly, clicking on the ~ untersuchen, wie man das Verhalten eines

box in the CheckBox will not select that item, butToggleButtons an ein TreeViewltem anhangen

clicking on the neighboring display text will. kann.

We will examine the TreeView's Die IsChecked-Eigenschaft der CheckBox ist an

IltemContainerStyle in the next section. die IsChecked-Eigenschaft eines FooViewModel-
Objekts gebunden, aber beachten Sie, dass die

Turning a TreeViewltem into a Content-Eigenschaft nicht auf irgendetwas

ToggleButton gesetzt ist. Stattdessen befindet sich direkt

daneben ein ContentPresenter, dessen Inhalt an
In the previous section, we quickly considered andie Eigenschaft Name eines FooViewModel-

interesting question. If the CheckBox in the Objekts gebunden ist. Wenn Sie auf eine
TreeViewltem has its Focusable property set to CheckBox klicken, wird standardmaRig der

false, how can it toggle its check state in Status der CheckBox umgeschaltet. Durch die
response to the Spacebar or Enter key? Since an Verwendung eines separaten ContentPresenters,
element only receives keystrokes if it has anstatt die Content-Eigenschaft der CheckBox zu
keyboard focus, it seems impossible for setzen, kdnnen wir dieses Standardverhalten

Requirement 5 to be satisfied. Keep in mind; we yermeiden. Dies hilft uns, die Anforderungen 6
had to set the CheckBox's Focusable property to und 7 zu erfiillen. Wenn Sie auf das Kastchen in
false so that navigating from item to item in the der CheckBox klicken, &ndert sich der Status des
tree does not require multiple keystrokes. Kontrollkastchens, aber das Klicken auf den
benachbarten Anzeigetext andert sich nicht. In
ahnlicher Weise wahlt ein Klick auf das Kastchen
in der CheckBox dieses Element nicht aus, aber
ein Klick auf den benachbarten Anzeigetext
schon.

This is a tricky problem: we cannot let the
CheckBox ever have input focus because it
negatively affects keyboard navigation, yet,
when its containing item is selected, it must
somehow toggle its check state in response to

certain keystrokes. These seem to be mutually wir werden den ItemContainerStyle des

exclusive requirements. When [hit this brick TreeViews im nachsten Abschnitt untersuchen.
wall, | decided to seek geek from the WPF

Disciples, and started this thread. Not to my Einen TreeViewltem in einen ToggleButton
surprise, Dr. WPF had already encountered this verwandeln

type of problem and devised a brilliant-

approaching_genius solution that was easy to Im vorigen Abschnitt haben wir uns schnell eine
p|ug into my app”cation_ The good Doctor sent interessante Frage gestellt. Wenn die CheckBox
me the code for a VirtualToggleButton class, and im TreeViewltem ihre Focusable-Eigenschaft auf

was kind enough to allow me to publish it in this false gesetzt hat, wie kann sie dann als Reaktion
article. auf die Leertaste oder die Eingabetaste ihren

Prufstatus umschalten? Da ein Element nur dann
The Doctor’s solution uses what John Gossman Tastendricke empfangt, wenn es den
refers to as “attached behavior.” The idea is thatTastaturfokus hat, scheint es unmdéglich zu sein,
you set an attached property on an element so die Anforderung 5 zu erfullen. Denken Sie daran,
that you can gain access to the element from dass wir die Eigenschaft Focusable der CheckBox
the class that exposes the attached property. auf false setzen mussten, damit die Navigation
Once that class has access to the element, it canvon Element zu Element in der Baumstruktur
hook events on it and, in response to those nicht mehrere Tastendrlcke erfordert.

events firing, make the element do things that it
norma”y would not do. It is a very convenient Dies ist ein knif‘ﬂiges Problem: Wir kdnnen nicht

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last
update:
2022/09/23
06:40

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663908009

alternative to creating and using subclasses, andzulassen, dass die CheckBox jemals den

is very XAML-friendly.

In this article, we see how to give a
TreeViewltem an attached IsChecked property

Eingabefokus hat, da dies die Navigation Uber
die Tastatur negativ beeinflusst, aber wenn das
Element, das sie enthalt, ausgewahlt ist, muss
sie irgendwie ihren Prufstatus als Reaktion auf

that toggles when the user presses the Spacebarbestimmte Tastendrlcke umschalten. Dies

or Enter key. That attached IsChecked property
binds to the IsChecked property of a

scheinen sich gegenseitig ausschliefende
Anforderungen zu sein. Als ich auf diess

FooViewModel object, which is also bound to the Hindernis stieR, beschloss ich, die WPF-Jiinger

IsChecked property of the CheckBox in the
TreeViewltem. This solution gives the
appearance that a CheckBox is toggling its

um Rat zu fragen, und startete diesen Thread.
Zu meiner Uberraschung war Dr. WPF bereits auf
diese Art von Problem gestoBen und hatte eine

check state in response to the Spacebar or Enter genijale Losung entwickelt, die sich leicht in

key, but in reality, its IsChecked property
updates in response to a TreeViewltem pushing
a new value to the ViewModel’s IsChecked
property via data binding.

meine Anwendung integrieren lieR. Der gute
Doktor schickte mir den Code fur eine
VirtualToggleButton-Klasse und war so
freundlich, mir zu erlauben, ihn in diesem Artikel
zu veroffentlichen.

Before going any further, | should point out that |

fully recognize that this is crazy. The fact that Dje Lésung des Doktors verwendet das, was John

this is the cleanest way to implement a TreeViewGossman als , angehangtes Verhalten“ (attached
of checkboxes in WPF v3.5 indicates, to me, that pehavior) bezeichnet. Die Idee ist, dass Sie eine

Microsoft needs to simplify this aspect of the

angehangte Eigenschaft auf ein Element setzen,

platform. However, until they do, this is probably so dass Sie von der Klasse, die die angehangte

the best way to implement the feature.

In this demo, we do not make use of all features
in Dr. WPF’s VirtualToggleButton class. It has
support for several things that we do not need,
such as handling mouse clicks and providing tri-
state checkboxes. We only need to make use of
its support for the attached
IsVirtualToggleButton and IsChecked properties
and the keyboard interaction behavior it
provides.

Here is the property-changed callback method
for the attached IsVirtualToggleButton property,
which is what enables this class to gain access
to TreeViewltems in the tree:

1. /// <summary>

2. /// Handles changes to the
IsVirtualToggleButton property.

3. /// </summary>

. private static void

OnIsVirtualToggleButtonChanged

5. DependencyObject d
DependencyPropertyChangedEventA
rgs e

Eigenschaft exponiert, Zugriff auf das Element
erhalten kdnnen. Sobald diese Klasse Zugriff auf
das Element hat, kann sie Ereignisse an das
Element koppeln und als Reaktion auf das
Ausldsen dieser Ereignisse das Element Dinge
tun lassen, die es normalerweise nicht tun
wdurde. Dies ist eine sehr bequeme Alternative
zum Erstellen und Verwenden von Unterklassen
und ist sehr XAML-freundlich.

In diesem Artikel sehen wir, wie man einem
TreeViewltem eine angehangte IsChecked-
Eigenschaft gibt, die umschaltet, wenn der
Benutzer die Leertaste oder die Eingabetaste
drickt. Diese angehangte IsChecked-Eigenschaft
ist an die IsChecked-Eigenschaft eines
FooViewModel-Objekts gebunden, das wiederum
an die IsChecked-Eigenschaft der CheckBox im
TreeViewltem gebunden ist. Diese Losung
erweckt den Anschein, dass eine CheckBox ihren
Prufstatus als Reaktion auf die Leertaste oder
die Eingabetaste umschaltet, aber in Wirklichkeit
wird ihre IsChecked-Eigenschaft als Reaktion auf
ein TreeViewltem aktualisiert, das einen neuen
Wert an die IsChecked-Eigenschaft des
ViewModels Uber Datenbindung Ubertragt.

https://jmz-elektronik.ch/dokuwiki/

Printed on 2026/01/31 19:07

2026/01/31 19:07

17/21 Tipps und Tricks

6.

7. IInputElement element = d
as IInputElement

8. element null

9.

10. bool)e.NewValue

11.

12.
element.MouselLeftButtonDown
OnMouselLeftButtonDown

13. element.KeyDown
OnKeyDown

14.

15.

16.

17.
element.MouselLeftButtonDown
OnMouselLeftButtonDown

18. element.KeyDown
OnKeyDown

19.

20.

21.

When a TreeViewltem raises its KeyDown event,

this logic executes:

1. private static void
OnKeyDown (object sender
KeyEventArgs e

2.
3. e.0OriginalSource
sender
4.
5. e.Key Key.Space
6.
7. // ignore alt+space
which invokes the system menu
8.

Keyboard.Modifiers
ModifierKeys.Alt
ModifierKeys.Alt

9.

10.

11.
UpdateIsChecked(sender as
DependencyObject

12. e.Handled = true

13.

14. e.Key

Bevor ich fortfahre, sollte ich darauf hinweisen,
dass mir vollig klar ist, dass dies verrlckt ist. Die
Tatsache, dass dies der sauberste Weg ist, eine
TreeView von Kontrollkastchen in WPF v3.5 zu
implementieren, zeigt mir, dass Microsoft diesen
Aspekt der Plattform vereinfachen muss. Bis
dahin ist dies jedoch wahrscheinlich der beste
Weg, die Funktion zu implementieren.

In dieser Demo machen wir nicht von allen
Funktionen der VirtualToggleButton-Klasse von
Dr. WPF Gebrauch. Sie bietet Unterstltzung fur
mehrere Dinge, die wir nicht benétigen, wie z. B.
die Verarbeitung von Mausklicks und die
Bereitstellung von Checkboxen mit drei
Zustanden. Wir brauchen nur die Unterstitzung
fur die angehangten Eigenschaften
IsVirtualToggleButton und IsChecked sowie das
Verhalten bei der Tastaturinteraktion, das sie
bietet.

Hier ist die Callback-Methode fur die angehangte
IsVirtualToggleButton-Eigenschaft, die es dieser
Klasse ermdglicht, Zugriff auf TreeViewltems im
Baum zu erhalten:

1. /// <summary>

2. /// Behandelt Anderungen an der
Eigenschaft
IsVirtualToggleButton.

3. /// </summary>

4. private static void
OnIsVirtualToggleButtonChanged

5. DependencyObject d
DependencyPropertyChangedEventA

rgs e

6.

7. IInputElement element = d
as IInputElement

8. element null

9.

10. bool)e.NewValue

11.

12.

element.MouselLeftButtonDown
OnMouselLeftButtonDown
13. element.KeyDown
OnKeyDown
14,

15.

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last
update:
2022/09/23
06:40

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663908009

15.

16.

17.
18.

19.
20.
21.
22.
23.
24.

25.
26.

27.
28.
29.
30.
31.
32.

33.
34.
35.
36.

37.
38.

Key.Enter
bool
DependencyObject

sender as

.GetValue(KeyboardNavigation.Ac
ceptsReturnProperty

UpdateIsChecked(sender as
DependencyObject

e.Handled true

private static void
UpdateIsChecked (DependencyObjec
t d

Nullable<bool> isChecked
GetIsChecked(d
isChecked true

SetIsChecked(d
GetIsThreeState(d
Nullable<bool>)null

Nullable<bool>)false

SetIsChecked(d
isChecked.HasValue

The UpdatelsChecked method sets the attached
IsChecked property on an element, which is a
TreeViewltem in this demo. Setting an attached
property on a TreeViewltem has no effect by

itself.

In order to have the application use that

property value, it must be bound to something
In this application, it is bound to the IsChecked

property of a FooViewModel object. The following

Style

is assigned to the TreeView’s

IltemContainerStyle property. It ties a
TreeViewltem to a FooViewModel object and
adds the virtual ToggleButton behavior that we
just examined.

16.
17.

18.

19.

20.
21.

element.MouselLeftButtonDown
OnMouselLeftButtonDown

element.KeyDown
OnKeyDown

Wenn ein TreeViewltem sein KeyDown Ereignis
auslost, wird diese Logik ausgefuhrt:

w

N o o b~

10.
11.

12.
13.
14,

15.

16.

17.
18.

19.
20.
21.

. private static void

OnKeyDown(object sender
KeyEventArgs e

e.0riginalSource
sender
e.Key Key.Space

// ignore alt+space
which invokes the system menu

Keyboard.Modifiers

ModifierKeys.Alt
ModifierKeys.Alt

UpdateIsChecked(sender as

DependencyObject
e.Handled = true
e.Key
Key.Enter
bool) (sender as
DependencyObject
.GetValue(KeyboardNavigation.Ac
ceptsReturnProperty

UpdateIsChecked(sender as
DependencyObject

e.Handled true

https://jmz-elektronik.ch/dokuwiki/

Printed on 2026/01/31 19:07

2026/01/31 19:07 19/21 Tipps und Tricks

1. <Style 22.
X:Key="TreeViewItemStyle" 23.
TargetType="TreeViewItem"> 24. private static void

2. <Setter Property="IsExpanded" UpdateIsChecked (DependencyObjec
Value="True" /> td

3. <Setter Property="IsSelected" 25.
Value="{Binding 26. Nullable<bool> isChecked
IsInitiallySelected, GetIsChecked(d
Mode=0neTime}" /> 27. isChecked true

4. <Setter 28.
Property="KeyboardNavigation.Ac 29. SetIsChecked(d
ceptsReturn" Value="True" /> 30. GetIsThreeState(d

5. <Setter 31. Nullable<bool>)null
Property="dw:VirtualToggleButto 32.
n.IsVirtualToggleButton" Nullable<bool-)false
Value="True" /> 33.

6. <Setter 34.
Property="dw:VirtualToggleButto 35.
n.IsChecked" Value="{Binding 36. SetIsChecked(d
IsChecked}" /> isChecked.HasValue

7. </Style> 37.

38.

This piece ties the entire puzzle together. Note
that the attached
KeyboardNavigation.AcceptsReturn property is
set to true on each TreeViewltem so that the
VirtualToggleButton will toggle its check state in
response to the Enter key. The first Setter in the
Style, which sets the initial value of each item's
IsExpanded property to true, ensures that
Requirement 8 is met.

CheckBox Bug in Aero Theme

I must point out one strange, and disappointing,
issue. The Aero theme for WPF’s CheckBox
control has a problem in .NET 3.5. When it
moves from the ‘Indeterminate’ state to the
‘Checked’ state, the background of the box does
not update properly until you move the mouse
cursor over it. You can see this in the screenshot
below:

Die UpdatelsChecked-Methode setzt die
angehangte IsChecked-Eigenschaft auf ein
Element, das in dieser Demo ein TreeViewltem
ist. Das Setzen einer angehangten Eigenschaft
auf einem TreeViewltem hat selbst keinen Effekt.
Damit die Anwendung diesen Eigenschaftswert
verwenden kann, muss er an etwas gebunden
sein. In dieser Anwendung ist sie an die
IsChecked Eigenschaft eines FooViewModel
Objekts gebunden. Der folgende Style wird der
ItemContainerStyle Eigenschaft des TreeViews
zugewiesen. Er bindet ein TreeViewltem an ein
FooViewModel Objekt und fugt das virtuelle
ToggleButton Verhalten hinzu, das wir gerade
untersucht haben.

1. <Style
x:Key="TreeViewItemStyle"
TargetType="TreeViewItem">

<Setter Property="IsExpanded"
Value="True" />

<Setter Property="IsSelected"
Value="{Binding
IsInitiallySelected,
Mode=0neTime}" />

4, <Setter

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last

update:
2022/09/23

06:40

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663908009

P

CheckBoxes

4 [B Weapons
agger

[¥|Machete
[¥|sword

4 [J]Vehicles
[¥| Apache Helicopter
[¥]submarine
[¥|Tank

4 [¥IGuns
V| AK 47
[¥|Beretta

Wluzi

F=1Eo8tx™

Uncheck All

=

Property="KeyboardNavigation.Ac
ceptsReturn" Value="True" />

5. <Setter
Property="dw:VirtualToggleButto
n.IsVirtualToggleButton"
Value="True" />

6. <Setter
Property="dw:VirtualToggleButto
n.IsChecked" Value="{Binding
IsChecked}" />

7. </Style>

Dieses Teil fugt das gesamte Puzzle zusammen.
Beachten Sie, dass die angehangte Eigenschaft
KeyboardNavigation.AcceptsReturn fur jedes
TreeViewltem auf true gesetzt ist, so dass der

VirtualToggleButton seinen Prifstatus als
Reaktion auf die Enter-Taste umschaltet. Der
erste Setter im Style, der den Anfangswert der
IsExpanded-Eigenschaft jedes Elements auf true
setzt, stellt sicher, dass Anforderung 8 erfullt ist.

CheckBox-Fehler im Aero-Thema Ich muss auf
ein seltsames und enttauschendes Problem
hinweisen. Das Aero-Thema fur das CheckBox-
Steuerelement von WPF hat ein Problem in .NET
3.5. Wenn es vom Zustand ,,Unbestimmt” in den
Zustand ,Gepruft” wechselt, wird der
Hintergrund des Kastchens nicht richtig
aktualisiert, bis Sie den Mauszeiger daruber
bewegen. Sie kdnnen dies im folgenden
Screenshot sehen:

4 B Weapons
Dagger
[¥IMachete
[¥sword
4 [{]Vehicles
[¥| Apache Helicopter
[¥| submarine
¥ Tank
4 [J|Guns
¥ AK 47
[¥|Beretta
¥uzi

Uncheck All

P

=)

CheckBoxes

https://jmz-elektronik.ch/dokuwiki/

Printed on 2026/01/31 19:07

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Adotnetgrundlagen%3Atipps_tricks&media=start:visualstudio2017:programmieren:tipps_tricks:screenshot_aero.png
https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Adotnetgrundlagen%3Atipps_tricks&media=start:visualstudio2017:programmieren:tipps_tricks:screenshot_aero.png

2026/01/31 19:07 21/21 Tipps und Tricks

From:
https://jmz-elektronik.ch/dokuwiki/ - Bicher & Dokumente

Permanent link:
https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663908009 3

Last update: 2022/09/23 06:40

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

https://jmz-elektronik.ch/dokuwiki/
https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663908009

	Inhaltsverzeichnis
	Tipps und Tricks
	ContextSwitchDeadlock erkennen und umgehen
	Fehlermeldung Visual Studio 2019
	Erklärung
	Lösung

	In Visual Studio 2019 zusätzliche Debug Informationen auschalten
	Zusätzliche Debug Informationen

	Window und Screen Mouse Koordinaten ermitteln
	Demo Code

	WPF, DependencyProperty.Register() or .RegisterAttached
	How to Test Your Internal Classes in C# (NUnit)
	Benefits of the internal access modifier
	How to test internal methods and classes?
	.Net Core
	.Net Standard project
	Conclusion

	Working with Checkboxes in the WPF TreeView / Arbeiten mit Kontrollkästchen in der WPF TreeView
	Introduction
	Background
	The Devil is in the Details
	Functional Requirements
	Putting the Smarts in a ViewModel
	TreeView Configuration
	Turning a TreeViewItem into a ToggleButton
	CheckBox Bug in Aero Theme
	Einführung
	Hintergrund
	Der Teufel steckt im Detail
	Funktionale Anforderungen
	Die Intelligenz in ein ViewModel packen
	TreeView Konfiguration
	Einen TreeViewItem in einen ToggleButton verwandeln

