2026/01/31 19:10 1/2 Tipps und Tricks

Inhaltsverzeichnis
TIPPS UNA THICKS ...t e e e e e e e e e e e b b e e e e e s nb b e e e e e e s annnnreeas 1
ContextSwitchDeadlock erkennen und umgehenccccccoiiiiiiiiiiiiiiii s 1
Fehlermeldung Visual STUdio 2019eeuiiiiiiiiii e 1
EPKIQIUNG ottt e e e e e e e e e e e bbb e ettt e e e e e e e e e e e e e r e e e e e e eeas 2
(01U o Lo TP PP TP PPPPPTTTPPPPPRRTIN 2
In Visual Studio 2019 zusatzliche Debug Informationen auschalten 2
Zusatzliche Debug INfOrmationenuuuiiiiiiiiii e 2
Window und Screen Mouse Koordinaten ermittelncccccocccccici, 2
WPF, DependencyProperty.Register() or .RegisterAttachedccceeeeiiieeennn. 3
How to Test Your Internal Classes in C# (NUNIL)coooiiiiiiiiiiie e 4
Working with Checkboxes in the WPF TreeView / Arbeiten mit Kontrollkastchen in der
WP TrEEVIBW ...ooiiiiiiiiiiiiiii ittt ettt e ettt e e e e e e e e e e s s s e e bbb bbb et e e et e e e e e eeeeennennnnns 8

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last
update:
2022/09/23
06:38

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663907909

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/31 19:10

2026/01/31 19:10 1/20 Tipps und Tricks

Tipps und Tricks

Hier finden Sie verschiedene Tipps und Tricks rund um C#, .NET und Visual Studio (Verschieden
Versionen).

ContextSwitchDeadlock erkennen und umgehen

Fehlermeldung Visual Studio 2019

Message

ContextSwitchDeadlock wurde erkannt. Message: Die CLR konnte 60 Sekunden lang keinen Ubergang
vom COM-Kontext 0x2¢c32f90 zum COM-Kontext 0x2c331e0 durchflhren. Der Thread, der Besitzer
des Zielkontexts/-apartments ist, wartet entweder, ohne Meldungen zu verschieben, oder verarbeitet
eine auBerst lang dauernde Operation, ohne Windows-Meldungen zu verschieben. Eine solche
Situation beeintrachtigt in der Regel die Leistung und kann sogar dazu fihren, dass die Anwendung
nicht mehr reagiert oder die Speicherauslastung immer weiter zunimmt. Zur Vermeidung dieses
Problems sollten alle STA-Threads (Singlethread-Apartment) primitive Typen verwenden, die beim
Warten Meldungen verschieben (z.B. CoWaitForMultipleHandles), und bei lange dauernden
Operationen generell Meldungen verschieben.

Diese tritt beim abfragen von Fenstertitel der Anwendungen auf, der Code dazu:

1. public string Text
2
3 get
4.
5. try
6
7 StringBuilder title = new StringBuilder
8. UnManagedMethods.GetWindowText (this.hWnd, title, title.Capacity
9. title.ToString
10.
11. catch "
12.
13.
14.
15. private class UnManagedMethods
16.
17. DllImport("user32", CharSet = CharSet.Auto
18. public extern static int GetWindowText (IntPtr hWnd, StringBuilder
1pString int cch
19.
20.

Der code wird in Visual Studio 2019 im Debug Modus ausgefuhrt. Wie kann man dieses ,,hangen
bleiben“ erkennen und abbrechen, gibt es da GUberhaupt eine Mdglichkeit?

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last
update:
2022/09/23
06:38

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663907909

Erklarung

Wenn man im Debug Modus anhalt, dann werden auch keine Windows-Nachrichten mehr verarbeitet.
Das heilst, die COM-Komponente verarbeitet eine Windows-Nachricht, die verursacht, dass in deinen
Code gesprungen wird. Sollte dann binnen 60 Sekunden keine Ruckantwort kommen, dann erhalst Du
diese Fehlermeldung, weil die COM Komponente keine weiteren Nachrichten verarbeiten kann
derweil.

Losung

Einfach die Exception in den Visual Studio Einstellungen abschalten.

In Visual Studio 2019 zusatzliche Debug Informationen
auschalten

Zusatzliche Debug Informationen

Rename Layout E Die Standardeinstellungen in Visual
Studio 2019 zeigt oben auf jedem WPF
- Fenster zusatziche Tool zum debugen des
Enter New NE" Programm an. Nachteil ist, dass damit
New Layout auch darunterliegende Komponenten
verdeckt werden. Mit folgenden Schritten
lasst sich das auch ausschalten:

CK | Cancel

English Version : Tools - Options - Debugging - General -» Enable Ul Debugging Tools for XAML
Deutsche Version : Extras - Optionen -» Debugging = Allgemein = Ul-Debugtool fur XAML aktivieren

Setzen oder entfernen Sie einfach das Hackchen.

Window und Screen Mouse Koordinaten ermitteln

Wie wir alle wissen gibt es Methoden die uns die Mausposition relativ zu anderen controls zurlickgibt.
Doch manchmal mdchte wir auch die Mausposition ausserhalb des Fensters wissen. Diese
Kurzanleitung soll einen kleinen Tipp sein.

1. #Mit folgenden zwei Methoden lasst sich die Mausposition relativ zu
einem control ermitteln:

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/31 19:10

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Adotnetgrundlagen%3Atipps_tricks&media=start:visualstudio2017:programmieren:tipps_tricks:wpf_debug_windows_tools.png

2026/01/31 19:10 3/20 Tipps und Tricks

2. Mouse.GetPosition(IInputElement relativeTo
3. MouseEventArgs.GetPosition(IInputElement relativeTo).

Demo Code

Bei diesem Beispiel wird die Mausposition auf der obersten Titelleiste (WindowTitle) angezeigt. Die
Koordination sind innerhalb des Fensters auf die Zeichnungsflache bezogen und ausserhalb des
Fensters werden die Screen Koordinaten angezeigt.

1. namespace CorelLoader.Views

2

3

4.

5. /// <summary>

6 /// Interaction logic for Main.xaml

7 /// </summary>

8. public partial class Main : Window

9.

10. public Main(object datacontex

11.

12. InitializeComponent

13. DataContext = datacontex

14.

15. CompositionTarget.Rendering OnRendering

16.

17.

18. private void OnRendering(object sender, EventArgs e

19.

20. var x = Mouse.GetPosition(this).X

21. var y = Mouse.GetPosition(this).Y

22. this.Title = Math.Round(y .ToString " !
Math.Round (x .ToString

23.

24.

25.

Der Event OnRendering() wird vor dem Zeichnen des WPF Fenster ausgefuhrt. Dieses Beispiel ist
eine verkurzte Abschrift und wurde zur Sicherung kopiert.

WPF, DependencyProperty.Register() or .RegisterAttached

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

https://getandplay.github.io/2019/05/13/How-does-WPF-application-get-mouse-position-when-mouse-stay-outside-window/
https://getandplay.github.io/2019/05/13/How-does-WPF-application-get-mouse-position-when-mouse-stay-outside-window/

Last
update:
2022/09/23
06:38

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663907909

English

Deutsch

| assume you meant
DependencyProperty.Register and
DependencyProperty.RegisterAttached.
DependencyProperty.Register is used to register
normal DependencyProperty. You can see those
as just regular properties, with the added twist
that they can take part in WPF's DataBinding,
animations etc. In fact, they are exposed as
normal property (with the get and set accessors)
on top of the untyped
DependencyObject.SetValue / GetValue. You
declare those as part of your type. Attached
properties on the other hand are different. They
are meant as an extensibility system. If you have
ever used Extenders in Windows Forms, they are
kind of similar. You declare them as part of a
type, to be used on another type. They are used
a lot for layout-related information. For example,
Canvas needs Left/Top coordinates, Grid needs a
Row and a Column, DockPanel needs a Dock
information etc. It would be a mess if all of this
had to be declared on every Control that can be
layouted. So they are declared on the
corresponding panel, but used on any Control.
You can use the same thing to attach any
information to a DependencyObject if you need
to. It can come in handy to just declare a piece of
information that you can set in xaml just to be
used later in a style for an existing class for
example. So those two kind of
DependencyProperty serve a very different
purpose. Regular properties (registered through
Register()) are used just like normal properties
as part of the interface of your type. Attached
properties (registered through
RegisterAttached()) are used as an extensibility
point on existing classes. Hope that clarifies it a
bit.

Ich nehme an, Sie meinten
DependencyProperty.Register und
DependencyProperty.RegisterAttached.
DependencyProperty.Register wird verwendet, um
normale DependencyProperty zu registrieren. Sie
kdnnen diese als ganz normale Eigenschaften
betrachten, mit dem zusatzlichen Vorteil, dass sie
an WPFs DataBinding, Animationen usw.
teilnehmen kdénnen. In der Tat sind sie als normale
Eigenschaft (mit den Get- und Set-Accessoren) auf
dem untypisierten DependencyObject.SetValue /
GetValue ausgesetzt. Sie deklarieren diese als Teil
Ihres Typs. Angehangte Eigenschaften hingegen
sind anders. Sie sind als ein System zur
Erweiterung gedacht. Wenn Sie schon einmal
Extender in Windows Forms verwendet haben, sind
sie sehr ahnlich. Sie werden als Teil eines Typs
deklariert, um in einem anderen Typ verwendet zu
werden. Sie werden haufig fur layoutbezogene
Informationen verwendet. Zum Beispiel braucht
Canvas Links/Oben-Koordinaten, Grid braucht eine
Row und eine Column, DockPanel braucht eine
Dock-Information usw. Es ware unubersichtlich,
wenn all dies fur jedes Steuerelement, das fur das
Layout verwendet werden kann, deklariert werden
musste. Also werden sie auf dem entsprechenden
Panel deklariert, aber auf jedem Control
verwendet. Sie kdnnen dasselbe tun, um beliebige
Informationen an ein DependencyObject
anzuhangen, wenn Sie es brauchen. Es kann sehr
nutzlich sein, eine Information zu deklarieren, die
man in xaml einstellen kann, um sie spater in
einem Stil flr eine bestehende Klasse zu
verwenden, zum Beispiel. Diese beiden Arten von
DependencyProperty dienen also einem sehr
unterschiedlichen Zweck. Regulare Eigenschaften
(registriert durch Register()) werden wie normale
Eigenschaften als Teil der Schnittstelle lhres Typs
verwendet. Angehangte Eigenschaften (registriert
durch RegisterAttached()) werden als
Erweiterungspunkt fur bestehende Klassen
verwendet. Ich hoffe, das macht es ein wenig
klarer.

--Denis Troller

How to Test Your Internal Classes in C# (NUnit)

How to test internal classes? (microsoft,) 2019-12-

10 by Johnny Graber

https://jmz-elektronik.ch/dokuwiki/

Printed on 2026/01/31 19:10

https://stackoverflow.com/questions/910579/dependencyproperty-register-or-registerattached#914030
https://improveandrepeat.com/2019/12/how-to-test-your-internal-classes-in-c/

2026/01/31 19:10 5/20 Tipps und Tricks

One of the most important concepts of object-oriented design is encapsulation. You try to hide all the
internal things of a class from the other developers and only offer them a subset of functionality to
use. You can achieve this by setting an appropriate access modifier for your methods and classes:

e public: The type or member can be accessed by any other code in the same assembly or
another assembly that references it.

e private: The type or member can be accessed only by code in the same class or struct.

e protected: The type or member can be accessed only by code in the same class, or in a class
that is derived from that class.

e internal: The type or member can be accessed by any code in the same assembly, but not
from another assembly.

e protected internal: The type or member can be accessed by any code in the assembly in
which it is declared, or from within a derived class in another assembly. (as in protected OR
internal)

 private protected: The type or member can be accessed only within its declaring assembly,
by code in the same class or in a type that is derived from that class. (as in private OR
protected)

Public and private are the two most used access modifiers. You find them in all the examples, they
are straight forward to use and do exactly what you expect. They are a great help to manage access
to the methods in your classes and the classes themselves.

If we look at bigger parts of our application, we use code from different assemblies or NuGet
packages. Those distribution formats have their own boundaries that you can use to enforce
encapsulation. Public and private access modifiers are again a great help. However, over the years |
appreciated the internal access modifier more and more.

Benefits of the internal access modifier

There is always that code that you need but has no place to go. It is not a class on its own and it does
not fit to any other. At some point you stop searching for the right place and put it into a class called
MyHelper. That code can’t be private, then many of your classes need them. And you do not want to
make it public, then this code should not be called from outside your assembly.

The internal access modifier is exactly made for such use cases. By declaring the class or just a few
methods as internal, you can access them from everywhere in your assembly but not from outside. All
you need to do is to write internal instead of public or private:

1. public class MyHelper

2

3 internal string InternalMethod

4.

5. "should only be visible to the class itself & tests"
6

7

8 public string PublicMethod

9.

10. "Everyone can call this method"
11.

12.

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last

3823585/23 start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663907909

06:38

13. private string PrivateMethod

14.

15. "you should not be able to call this directly"
16.

17.

The users of your assembly or NuGet package do not know that this helper method exist. That allows
you to freely move that code around to a better location or refactor it until you find a more fitting
abstraction. All that without the need to change code outside your assembly - then no one else can
call it directly.

var helper = new MyHelper();
helper.|

PublicMethod string
Equals

GetHashCode nt
GetType

O G GO

How to test internal methods and classes?

That helper code you marked with internal is most often important. Therefore, you should write
extensive tests for those classes and methods. But how can you do that when you can’t access that
code from outside your assembly?

The .NET Framework offers the InternalsVisibleTo attribute to specify which other assemblies can
access the internal methods and classes inside this assembly. All you need to do is to add this
attribute to the AssemblyInfo.cs file and pass the name of your test assembly to the constructor:

1. [assembly: InternalsVisibleTo("Logic.Tests"

When you put this attribute to the AssemblylInfo.cs file, then all internal methods can be accessed by
code inside the Logic.Tests assembly. To test your internal code this behaviour is exactly what you
want. If this is too much, you can add this attribute in a specific class and only allow access to the
internal methods of this class.

As soon as you recompile your assembly, the code in your test assembly can access your internal
methods:

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/31 19:10

2026/01/31 19:10 7/20 Tipps und Tricks

[Test]
public void InternalMethodCanBeUsed()

{

var testee = new MyHelper();

testee.
5+ InternalMethod string
@ PublicMethod string
¥ Equals bool
¥ GetHashCode int
¥ GetType Type

.Net Core

In .Net Core you do not have an AssemblylInfo.cs file. You can add one with the Add New Item dialog
and set the attribute there in the same way you would do that in the .Net Full Framework and get
exactly the same benefits.

Add New Item - Logic

T
T
iw

4 |nstalled Sort by: | Default v

i =C#
4 Visual C# Items Dl Assembly Information File Visual C# ltems
WPF

Code
Data

General

.Net Standard project

As pointed out by Miguel Alho in the comments, you can add an IltemGroup in your *.csproj file to get
the same effect. For that, paste this code as the last block before the closing project tag:

1. <ItemGroup>

2. <AssemblyAttribute
Include="System.Runtime.CompilerServices.InternalsVisibleTo">

3. < Parameterl-Logic.Tests</ Parameterl-

4. </AssemblyAttribute-

5. </ItemGroup>

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last
update:
2022/09/23
06:38

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663907909

Conclusion

Use the internal access modifier the next time you have helper code that you need but no one else
should call. This little keyword will help you to hide your mess inside your assembly and still allows
you to write tests. With internal you get the best of both worlds without breaking encapsulation.

2019-12-10 by Johnny Graber

Working with Checkboxes in the WPF
TreeView / Arbeiten mit Kontrollkastchen in
der WPF TreeView

Introduction Einfuhrung

This article reviews a WPF TreeView whose itemsDieser Artikel beschreibt eine WPF TreeView,
contain checkboxes. Each item is bound to a deren Elemente Kontrollkastchen enthalten.
ViewModel object. When a ViewModel object’s Jedes Element ist an ein ViewModel Objekt
check state changes, it applies simple rules to gebunden. Wenn sich der Prufstatus eines

the check state of its parent and child items. ViewModel-Objekts andert, wendet es einfache
This article also shows how to use the attached Regeln auf den Prifstatus seiner

behavior concept to turn a TreeViewltem into a Ubergeordneten und untergeordneten Elemente

virtual ToggleButton, which helps make the an. Dieser Artikel zeigt auch, wie man das
TreeView's keyboard interaction simple and angehangte Verhaltenskonzept verwenden kann,
intuitive. um ein TreeViewltem in einen virtuellen

ToggleButton zu verwandeln, der hilft, die
This article assumes that the reader is already Tastaturinteraktion des TreeViews einfach und

familiar with data binding and templates, intuitiv zu gestalten.

binding a TreeView to a ViewModel, and

attached properties. Dieser Artikel geht davon aus, dass der Leser
bereits mit Datenbindung und Templates, der

Background Bindung eines TreeViews an ein ViewModel und

_ . angehangten Eigenschaften vertraut ist.
It is very common to have a TreeView whose

items are checkboxes, such as when presenting Hintergrund

the user with a hierarchical set of options to

select. In some Ul platforms, such as WinForms, Es ist sehr tblich, einen TreeView zu haben,
the standard TreeView control offers built-in dessen Elemente Kontrollkastchen sind, z.B.
support for displaying checkboxes in its items. wenn dem Benutzer ein hierarchischer Satz von
Since element composition and rich data binding Optionen zur Auswahl prasentiert wird. In

are two core aspects of WPF, the WPF TreeView einigen Ul-Plattformen, wie z.B. WinForms, bietet
does not offer intrinsic support for displaying das Standard-TreeView-Steuerelement
checkboxes. It is very easy to declare a integrierte UnterstUtzung flr die Anzeige von
CheckBox control in a TreeView’s ItemTemplate Kontrollkastchen in seinen Elementen. Da

and suddenly every item in the tree contains a Elementkomposition und reichhaltige

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/31 19:10

https://improveandrepeat.com/2019/12/how-to-test-your-internal-classes-in-c/

2026/01/31 19:10 9/20 Tipps und Tricks

CheckBox. Add a simple {Binding} expression to

the IsChecked property, and suddenly the check Datenbindung zwei Kernaspekte von WPF sind,
state of those boxes is bound to some property bietet das WPF TreeView keine integrierte

on the underlying data objects. It would be Unterstltzung fur die Anzeige von

superfluous, at best, for the WPF TreeView to Kontrollkastchen. Es ist sehr einfach, ein
have an API specific to displaying checkboxes in CheckBox-Steuerelement im ltemTemplate eines

its items. TreeViews zu deklarieren und plotzlich enthalt
jedes Element im Baum eine CheckBox. Fligen
The Devil is in the Details Sie der IsChecked-Eigenschaft einen einfachen
{Binding}-Ausdruck hinzu, und plétzlich ist der
This sounds too good to be true, and it is. Priifstatus dieser Boxen an eine Eigenschaft der
Making the TreeView “feel right,” from a zugrunde liegenden Datenobjekte gebunden. Es

keyboard navigation perspective, is not quite as ware bestenfalls (iberfliissig, dass die WPF
simple. The fundamental problem is that as you TreeView eine API speziell fiir die Anzeige von

navigate the tree via arrow keys, a Checkboxen in ihren Elementen hat.
TreeViewltem will first take input focus, and then

the CheckBox it contains will take focus upon theDer Teufel steckt im Detail

next keystroke. Both the TreeViewltem and

CheckBox controls are focusable. The resultis ~ Das klingt zu schon, um wahr zu sein, und das

that you must press an arrow key twice to ist es auch. Den TreeView aus der Perspektive

navigate from item to item in the tree. Thatis ~ der Tastaturnavigation ,richtig” zu machen, ist
definitely not an acceptable user experience, ~ nhicht ganz so einfach. Das grundsatzliche

and there is no simple property that you can set Problem ist, dass ein TreeViewltem beim

to make it work properly. | have already brought Navigieren durch den Baum mit den Pfeiltasten

this issue to the attention of a certain key zuerst den Eingabefokus erhalt und dann die
member on the WPF team at Microsoft, so they CheckBox, die es enthalt, beim nachsten
might address it in a future version of the Tastendruck den Fokus erhalt. Sowohl das
platform. TreeViewltem- als auch das CheckBox-
Steuerelement sind fokussierbar. Das Ergebnis
Functional Requirements ist, dass Sie eine Pfeiltaste zweimal dricken
mussen, um im Baum von einem Element zum
Before we start to examine how this demo anderen zu navigieren. Das ist definitiv keine

program works, first we will review what it does. akzeptable Benutzererfahrung, und es gibt keine

Here is a screenshot of the demo application in einfache Eigenschaft, die Sie einstellen kénnen,

action: damit es richtig funktioniert. Ich habe bereits ein
bestimmtes Mitglied des WPF-Teams bei
Microsoft auf dieses Problem aufmerksam
gemacht, damit es in einer zukUlnftigen Version
der Plattform behoben werden kann.

Funktionale Anforderungen

Bevor wir untersuchen, wie dieses
Demoprogramm funktioniert, sollten wir uns
zunachst ansehen, was es tut. Hier ist ein
Screenshot der Demoanwendung in Aktion:

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last
update:

2022/09/23 start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663907909

06:38

F o

| TreeView with CheckBoxes [o] @[3

4 [Elweapons

4 [“IBlades
[“]Dagger
[“IMachete
[¥]sword

4 [®]Vehicles
[¥] Apache Helicopter
[]Ssubmarine
[“ITank

« [1Guns
[Jak 47
[]Beretta
uazi

B | TreeView with CheckBoxes

4 [E]weapons

== %

4 [V]Blades
[¥]Dagger
[¥IMachete
[¥]sword

4 [m]vehicles
[¥] Apache Helicopter
[]submarine
[Tank

4 [1Guns
[Jak 47
[IBeretta
Cuzi

Now let’s see what the functional requirements Schauen wir uns nun die funktionalen

are:

1. Requirement : Each item in the tree must
display a checkbox that displays the text
and check state of an underlying data
object.

2. Requirement : Upon an item being
checked or unchecked, all of its child items
should be checked or unchecked,
respectively.

3. Requirement : If an item’s descendants do
not all have the same check state, that
item’s check state must be
‘indeterminate.’

4. Requirement : Navigating from item to
item should require only one press of an
arrow key.

5. Requirement : Pressing the Spacebar or
Enter keys should toggle the check state
of the selected item.

6. Requirement : Clicking on an item’s
checkbox should toggle its check state,
but not select the item.

7. Requirement : Clicking on an item’s
display text should select the item, but not
toggle its check state.

8. Requirement : All items in the tree should
be in the expanded state by default.

| suggest you copy those requirements and
paste them into your favorite text editor, such as
Notepad, because we will reference them

1.

Anforderungen an:

Anforderung : Jedes Element in der
Baumstruktur muss ein Kontrollkastchen
enthalten, das den Text und den
Kontrollstatus eines zugrunde liegenden
Datenobjekts anzeigt.

. Anforderung : Wenn ein Element

angekreuzt oder nicht angekreuzt wird,
sollten alle seine untergeordneten
Elemente angekreuzt bzw. nicht
angekreuzt werden.

. Anforderung : Wenn die Nachkommen

eines Eintrags nicht alle den gleichen
Prufstatus haben, muss der Prufstatus
dieses Eintrags ,, unbestimmt” sein.
Anforderung : Das Navigieren von Element
zu Element sollte nur einen einzigen Druck
auf eine Pfeiltaste erfordern.

. Anforderung : Das Drucken der Leertaste

oder der Eingabetaste sollte den
PrUfstatus des ausgewahlten Eintrags
umschalten.

Anforderung : Ein Klick auf das
Kontrollkastchen eines Eintrags soll den
Kontrollstatus umschalten, aber den
Eintrag nicht auswahlen.

. Anforderung : Das Anklicken des

Anzeigetextes eines Eintrags soll den
Eintrag auswahlen, aber nicht seinen
Markierungsstatus umschalten.
Anforderung : Alle Elemente in der

https://jmz-elektronik.ch/dokuwiki/

Printed on 2026/01/31 19:10

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Adotnetgrundlagen%3Atipps_tricks&media=start:visualstudio2017:programmieren:tipps_tricks:screenshot.png
https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Adotnetgrundlagen%3Atipps_tricks&media=start:visualstudio2017:programmieren:tipps_tricks:screenshot.png

2026/01/31 19:10

11/20 Tipps und Tricks

throughout the rest of the article by number.
Putting the Smarts in a ViewModel

As explained in my ‘Simplifying the WPF
TreeView by Using the ViewModel Pattern’

Baumstruktur sollten sich standardmaRig
im erweiterten Zustand befinden.

Ich schlage vor, Sie kopieren diese
Anforderungen und flgen sie in lhren

article, the TreeView was practically designed to bevorzugten Texteditor ein, z. B. in Notepad, da

be used in conjunction with a ViewModel. This
article takes that idea further, and shows how
we can use a ViewModel to encapsulate
application-specific logic related to the check
state of items in the tree. In this article, we will
examine my FooViewModel class, which the
following interface describes:

1. interface IFooViewModel
INotifyPropertyChanged

2.
3. List<FooViewModel> Children
get

4, bool” IsChecked { get; set

5. bool IsInitiallySelected
get

6. string Name { get

7.

The most interesting aspect of this ViewModel

class is the logic behind the IsChecked property.

This logic satisfies Requirements 2 and 3, seen
previously. The FooViewModel's IsChecked logic
is below:

1. /// <summary>

2. /// Gets/sets the state of the
associated UI toggle (ex.
CheckBox) .

3. /// The return value is
calculated based on the check
state of all

4. /// child FooViewModels.
Setting this property to true
or false

5. /// will set all children to
the same check state, and
setting it

6. /// to any value will cause the
parent to verify its check
State.

wir sie im weiteren Verlauf des Artikels
nummerisch referenzieren werden.

Die Intelligenz in ein ViewModel packen

Wie in meinem Artikel 'Simplifying the WPF
TreeView by Using the ViewModel Pattern'
(Vereinfachung der WPF-TreeView durch
Verwendung des ViewModel-Musters) erlautert,
wurde die TreeView praktisch dafur entwickelt,
in Verbindung mit einem ViewModel verwendet
zu werden. Dieser Artikel fihrt diese Idee weiter
und zeigt, wie wir ein ViewModel verwenden
kdénnen, um anwendungsspezifische Logik in
Bezug auf den Prifstatus von Elementen im
Baum zu kapseln. In diesem Artikel werden wir
meine FooViewModel-Klasse untersuchen, die
durch die folgende Schnittstelle beschrieben
wird:

1. interface IFooViewModel
INotifyPropertyChanged

2.
3. List<FooViewModel> Children
get

4. bool” IsChecked | get; set

5. bool IsInitiallySelected
get

6. string Name { get

7.

1. ///Ruft den Zustand des
zugehorigen UI-Toggles (z.B.
CheckBox) ab bzw. setzt ihn.

2. ///Der Rickgabewert wird auf
der Grundlage des Prifstatus
aller untergeordneten

3. ///FooViewModelle berechnet.
Wenn diese Eigenschaft auf true
oder false gesetzt wird,

4. ///erhalten alle
untergeordneten Modelle den

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last
update:
2022/09/23
06:38

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663907909

7.
8.
el
10.
11.

12.
13.
14,

15.
16.
17.
18.
19.
20.
21.

22.

23.
24,

25.

26.
27.

28.
29.
30.
31.
32.
33.

34.
35.

36.
37.
38.
39.
40.

41.
42,

/// </summary>

public bool? IsChecked
get _isChecked
set

this.SetIsChecked(value, true
true

void SetIsChecked(bool? value
bool updateChildren, bool
updateParent
value _isChecked
_isChecked = value
updateChildren

_isChecked.HasValue
this.Children.ForEach(c
c.SetIsChecked(isChecked
true, false

updateParent
null

_parent
_parent.VerifyCheckState

this.OnPropertyChanged("IsCheck
edll

void VerifyCheckState

bool” state null

int i i

this.Children.Count i
bool” current

this.Children[i].IsChecked
i

state current

state
current

state null

O 00N O

11.
12.

13.
14,
15.
16.
17.
18.
19.

20.

21.
22.

23.

24.
25.

26.
27.
28.
29.
30.
31.

32.
33.

34.
35.
36.
37.

gleichen Prifstatus,

. ///und wenn sie auf einen

beliebigen Wert gesetzt wird,
Uberprift das lUbergeordnete
Modell seinen Prifstatus.

. public bool? IsChecked

get _isChecked

set
this.SetIsChecked(value, true
true

void SetIsChecked(bool’ value
bool updateChildren, bool
updateParent
value _isChecked
_isChecked = value
updateChildren

_isChecked.HasValue
this.Children.ForEach(c
c.SetIsChecked(isChecked
true, false

updateParent
null

_parent
_parent.VerifyCheckState

this.OnPropertyChanged("IsCheck
e(jll

void VerifyCheckState

bool? state null
int i i
this.Children.Count i

bool? current
this.Children[i].IsChecked
i

state current

https://jmz-elektronik.ch/dokuwiki/

Printed on 2026/01/31 19:10

2026/01/31 19:10 13/20 Tipps und Tricks

43. break
44, 38. state
45. current
46, this.SetIsChecked (state 39.
false, true 40. state = null
47. 41. break
42.
43.
This strategy is specific to the functional 44 . this.SetIsChecked(state
requirements | imposed upon myself. If you have false. true

different rules regarding how and when items 45.
should update their check state, simply adjust

the logic in those methods to suit your needs.
Diese Strategie ist spezifisch fur die funktionalen

TreeView Configuration Anforderungen, die ich mir selbst auferlegt habe.
Wenn Sie andere Regeln haben, wie und wann
Now it is time to see how the TreeView is able to Elemente ihren Priifstatus aktualisieren sollten,

display checkboxes and bind to the ViewModel. passen Sie die Logik in diesen Methoden einfach

This is entirely accomplished in XAML. The an lhre Bedurfnisse an.
TreeView declaration is actually quite simple, as
seen below: TreeView Konfiguration

Nun ist es an der Zeit zu sehen, wie die

1. <TreeView TreeView in der Lage ist, Kontrollkéstchen
2. x:Name="tree" anzuzeigen und an das ViewModel zu binden.
3. Dies wird vollstandig in XAML realisiert. Die
ItemContainerStyle="{StaticReso TreeView-Deklaration ist eigentlich recht
urce TreeViewItemStyle}" einfach, wie unten zu sehen ist:
4, ItemsSource="{Binding
Mode=0neTime}"
5. ItemTemplate="{StaticResource 1. <TreeView
CheckBoxItemTemplate}" 2. x:Name="tree"
6. 3
7. code ItemContainerStyle="{StaticReso
8. The TreeView’s ItemsSource urce TreeViewItemStyle}"
property is implicitly bound to 4. ItemsSource="{Binding
its DataContext, which inherits Mode=0neTime}"
a List-FooViewModel> from the 5. ItemTemplate="{StaticResource
containing window. That list CheckBoxItemTemplate}"
only contains one ViewModel 6.
object, but it is necessary to 7. code
put it into a collection 8. The TreeView’'s ItemsSource
because ItemsSource is of type property is implicitly bound to
IEnumerable. its DataContext, which inherits
0. a List<FooViewModel-> from the
10. TreeViewItem is a container of containing window. That list
visual elements generated by only contains one ViewModel
the ItemTemplate. In this demo object, but it is necessary to
we assign the following put it into a collection
HierarchicalDataTemplate to the because ItemsSource is of type
tree's ItemTemplate property: IEnumerable.
11. 9.

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last
update:
2022/09/23
06:38

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663907909

12. <code C# 10. TreeViewItem is a container of

[enable line numbers="true", hig visual elements generated by
hlight lines extra="0,"]> the ItemTemplate. In this demo
13. <HierarchicalDataTemplate we assign the following
14, x:Key="CheckBoxItemTemplate" HierarchicalDataTemplate to the
15. ItemsSource="{Binding tree's ItemTemplate property:
Children, Mode=0neTime}" 11.
16. > 12. <code C#
17. <StackPanel [enable line numbers="true",b hig
Orientation="Horizontal"> hlight lines extra="0,"]>
18. <!-- These elements are 13. <HierarchicalDataTemplate
bound to a FooViewModel object. 14. x:Key="CheckBoxItemTemplate"
--> 15. ItemsSource="{Binding
19. <CheckBox Children, Mode=0neTime}"
20. Focusable="False" 16. >
21. IsChecked="{Binding 17. <StackPanel
IsChecked}" Orientation="Horizontal">
22. 18. <!-- These elements are
VerticalAlignment="Center" bound to a FooViewModel object.
23. /> -->
24. <ContentPresenter 19. <CheckBox
25. Content="{Binding Name, 20. Focusable="False"
Mode=0neTime}" 21. IsChecked="{Binding
26. Margin="2,0" IsChecked}"
27. /> 22.
28. </StackPanel> VerticalAlignment="Center"
29. </HierarchicalDataTemplate> 23. />
24, <ContentPresenter
25. Content="{Binding Name,
There are several points of interest in that Mode=OneTime}"
template. The template includes a CheckBox 26. Margin="2,0"
whose Focusable property is set to false. This 27 . />
prevents the CheckBox from ever receiving input >g- </StackPanels>

focus, which assists in meeting Requirement 4.
You might be wondering how we will be able to
satisfy Requirement 5 if the CheckBox never has
input focus. We will address that issue later in In dieser Vorlage gibt es mehrere interessante
this article, when we examine how to attach the Punkte. Die Vorlage enthalt eine CheckBox,
behavior of a ToggleButton to a TreeViewltem. deren Eigenschaft Focusable auf false gesetzt

ist. Dadurch wird verhindert, dass die CheckBox
The CheckBox's IsChecked property is bound to jemals den Eingabefokus erhalt, was zur

29. </HierarchicalDataTemplate>

the IsChecked property of a FooViewModel Erfilllung von Anforderung 4 beitragt. Sie fragen
object, but notice that its Content property is notsjch vielleicht, wie wir die Anforderung 5 erfiillen
set to anything. Instead, there is a kénnen, wenn die CheckBox nie den
ContentPresenter directly next to it, whose Eingabefokus erhalt. Wir werden dieses Problem
Content is bound to the Name property of a spater in diesem Artikel behandeln, wenn wir
FooViewModel object. By default, clicking untersuchen, wie man das Verhalten eines
anywhere on a CheckBox causes it to toggle its ToggleButtons an ein TreeViewltem anhangen
check state. By using a separate kann.

ContentPresenter, rather than setting the
CheckBox’s Content property, we can avoid that Die IsChecked-Eigenschaft der CheckBox ist an

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/31 19:10

2026/01/31 19:10 15/20 Tipps und Tricks

default behavior. This helps us satisfy
Requirements 6 and 7. Clicking on the box die IsChecked-Eigenschaft eines FooViewModel-
element in the CheckBox will cause its check ~ Objekts gebunden, aber beachten Sie, dass die

state to change, but clicking on the neighboring Content-Eigenschaft nicht auf irgendetwas
display text will not. Similarly, clicking on the gesetzt ist. Stattdessen befindet sich direkt

box in the CheckBox will not select that item, butdaneben ein ContentPresenter, dessen Inhalt an

clicking on the neighboring display text will. die Eigenschaft Name eines FooViewModel-
Objekts gebunden ist. Wenn Sie auf eine

We will examine the TreeView’s CheckBox klicken, wird standardmafig der

ItemContainerStyle in the next section. Status der CheckBox umgeschaltet. Durch die
Verwendung eines separaten ContentPresenters,

Turning a TreeViewltem into a anstatt die Content-Eigenschaft der CheckBox zu

ToggleButton setzen, kénnen wir dieses Standardverhalten

. _ _ _ vermeiden. Dies hilft uns, die Anforderungen 6
In the previous section, we quickly considered an ;4 7 zu erfiillen. Wenn Sie auf das Kastchen in

interesting question. If the CheckBox in the der CheckBox klicken, &ndert sich der Status des
TreeViewltem has its Focusable property setto yqntrolikastchens, aber das Klicken auf den

false, how can it toggle its check state in- benachbarten Anzeigetext andert sich nicht. In
response to the Spacebar or Enter. kgy? Since an zhnlicher Weise wahlt ein Klick auf das Kastchen
element only receives keystrokes if it has in der CheckBox dieses Element nicht aus, aber

keyboard focus, it seems impossible for - ein Klick auf den benachbarten Anzeigetext
Requirement 5 to be satisfied. Keep in mind; we ¢.hon.

had to set the CheckBox's Focusable property to
false so that navigating from item to item in the Wir werden den ItemContainerStyle des

tree does not require multiple keystrokes. TreeViews im nachsten Abschnitt untersuchen.
This is a tricky problem: we cannot let the Einen TreeViewltem in einen ToggleButton
CheckBox ever have input focus because it verwandeln

negatively affects keyboard navigation, yet,

when its containing item is selected, it must Im vorigen Abschnitt haben wir uns schnell eine

somehow toggle its check state in response to interessante Frage gestellt. Wenn die CheckBox
certain keystrokes. These seem to be mutually im TreeViewltem ihre Focusable-Eigenschaft auf
exclusive requirements. When | hit this brick false gesetzt hat, wie kann sie dann als Reaktion

wall, | decided to seek geek from the WPF auf die Leertaste oder die Eingabetaste ihren
Disciples, and started this thread. Not to my Prifstatus umschalten? Da ein Element nur dann
surprise, Dr. WPF had already encountered this Tastendricke empfangt, wenn es den

type of problem and devised a brilliant- Tastaturfokus hat, scheint es unmaoglich zu sein,

approaching-genius solution that was easy to die Anforderung 5 zu erflllen. Denken Sie daran,
plug into my application. The good Doctor sent dass wir die Eigenschaft Focusable der CheckBox
me the code for a VirtualToggleButton class, and auf false setzen mussten, damit die Navigation
was kind enough to allow me to publish it in this von Element zu Element in der Baumstruktur
article. nicht mehrere Tastendricke erfordert.

The Doctor’s solution uses what John Gossman Dies ist ein kniffliges Problem: Wir kdnnen nicht
refers to as “attached behavior.” The idea is thatzulassen, dass die CheckBox jemals den

you set an attached property on an element so Eingabefokus hat, da dies die Navigation Uber
that you can gain access to the element from die Tastatur negativ beeinflusst, aber wenn das
the class that exposes the attached property. Element, das sie enthalt, ausgewahlt ist, muss
Once that class has access to the element, it cansie irgendwie ihren Prifstatus als Reaktion auf
hook events on it and, in response to those bestimmte Tastendricke umschalten. Dies
events firing, make the element do things that it scheinen sich gegenseitig ausschliefende
normally would not do. It is a very convenient Anforderungen zu sein. Als ich auf diess

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last
update:
2022/09/23
06:38

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663907909

alternative to creating and using subclasses, andHindernis stiel8, beschloss ich, die WPF-Jinger

is very XAML-friendly.

In this article, we see how to give a
TreeViewltem an attached IsChecked property

um Rat zu fragen, und startete diesen Thread.
Zu meiner Uberraschung war Dr. WPF bereits auf
diese Art von Problem gestolRen und hatte eine
geniale Losung entwickelt, die sich leicht in

that toggles when the user presses the Spacebarmeine Anwendung integrieren lieR. Der gute

or Enter key. That attached IsChecked property
binds to the IsChecked property of a

Doktor schickte mir den Code fur eine

VirtualToggleButton-Klasse und war so

FooViewModel object, which is also bound to the freundlich, mir zu erlauben, ihn in diesem Artikel

IsChecked property of the CheckBox in the
TreeViewltem. This solution gives the
appearance that a CheckBox is toggling its

zu veroffentlichen.

Die Losung des Doktors verwendet das, was John

check state in response to the Spacebar or Enter Gossman als ,angehangtes Verhalten” (attached

key, but in reality, its IsChecked property
updates in response to a TreeViewltem pushing
a new value to the ViewModel’s IsChecked
property via data binding.

behavior) bezeichnet. Die Idee ist, dass Sie eine
angehangte Eigenschaft auf ein Element setzen,
so dass Sie von der Klasse, die die angehangte
Eigenschaft exponiert, Zugriff auf das Element
erhalten kénnen. Sobald diese Klasse Zugriff auf

Before going any further, | should point out that Idas Element hat, kann sie Ereignisse an das

fully recognize that this is crazy. The fact that

Element koppeln und als Reaktion auf das

this is the cleanest way to implement a TreeViewAys|gsen dieser Ereignisse das Element Dinge
of checkboxes in WPF v3.5 indicates, to me, that tyn lassen, die es normalerweise nicht tun

Microsoft needs to simplify this aspect of the

wurde. Dies ist eine sehr bequeme Alternative

platform. However, until they do, this is probably zym Erstellen und Verwenden von Unterklassen

the best way to implement the feature.

In this demo, we do not make use of all features
in Dr. WPF’s VirtualToggleButton class. It has
support for several things that we do not need,
such as handling mouse clicks and providing tri-
state checkboxes. We only need to make use of
its support for the attached
IsVirtualToggleButton and IsChecked properties
and the keyboard interaction behavior it
provides.

Here is the property-changed callback method
for the attached IsVirtualToggleButton property,
which is what enables this class to gain access
to TreeViewltems in the tree:

1. /// <summary>

2. /// Handles changes to the
IsVirtualToggleButton property.

3. /// </summary>

. private static void

OnIsVirtualToggleButtonChanged

5. DependencyObject d
DependencyPropertyChangedEventA
rgs e

und ist sehr XAML-freundlich.

In diesem Artikel sehen wir, wie man einem
TreeViewltem eine angehangte IsChecked-
Eigenschaft gibt, die umschaltet, wenn der
Benutzer die Leertaste oder die Eingabetaste
druckt. Diese angehangte IsChecked-Eigenschaft
ist an die IsChecked-Eigenschaft eines
FooViewModel-Objekts gebunden, das wiederum
an die IsChecked-Eigenschaft der CheckBox im
TreeViewltem gebunden ist. Diese Ldsung
erweckt den Anschein, dass eine CheckBox ihren
PrUfstatus als Reaktion auf die Leertaste oder
die Eingabetaste umschaltet, aber in Wirklichkeit
wird ihre IsChecked-Eigenschaft als Reaktion auf
ein TreeViewltem aktualisiert, das einen neuen
Wert an die IsChecked-Eigenschaft des
ViewModels Uber Datenbindung Ubertragt.

Bevor ich fortfahre, sollte ich darauf hinweisen,
dass mir vollig klar ist, dass dies verruckt ist. Die
Tatsache, dass dies der sauberste Weg ist, eine
TreeView von Kontrollkastchen in WPF v3.5 zu
implementieren, zeigt mir, dass Microsoft diesen
Aspekt der Plattform vereinfachen muss. Bis
dahin ist dies jedoch wahrscheinlich der beste
Weg, die Funktion zu implementieren.

https://jmz-elektronik.ch/dokuwiki/

Printed on 2026/01/31 19:10

2026/01/31 19:10

17/20

6.

7. IInputElement element = d
as IInputElement

8. element null

9.

10. bool)e.NewValue

11.

12.
element.MouselLeftButtonDown
OnMouselLeftButtonDown

13. element.KeyDown
OnKeyDown

14.

15.

16.

17.
element.MouselLeftButtonDown
OnMouselLeftButtonDown

18. element.KeyDown
OnKeyDown

19.

20.

21.

When a TreeViewltem raises its KeyDown event,
this logic executes:

1. private static void
OnKeyDown (object sender
KeyEventArgs e

2.
3. e.0OriginalSource
sender
4.
5. e.Key Key.Space
6.
7. // ignore alt+space
which invokes the system menu
8.

Keyboard.Modifiers
ModifierKeys.Alt
ModifierKeys.Alt

9.

10.

11.
UpdateIsChecked(sender as
DependencyObject

12. e.Handled = true

13.

14. e.Key

In dieser Demo machen wir nicht von allen
Funktionen der VirtualToggleButton-Klasse von
Dr. WPF Gebrauch. Sie bietet Unterstutzung fur
mehrere Dinge, die wir nicht benétigen, wie z. B.
die Verarbeitung von Mausklicks und die
Bereitstellung von Checkboxen mit drei
Zustanden. Wir brauchen nur die Unterstlitzung
fur die angehangten Eigenschaften
IsVirtualToggleButton und IsChecked sowie das
Verhalten bei der Tastaturinteraktion, das sie
bietet.

Hier ist die Callback-Methode flr die angehangte
IsVirtualToggleButton-Eigenschaft, die es dieser
Klasse ermdglicht, Zugriff auf TreeViewltems im
Baum zu erhalten:

1. /// <summary>

2. /// Behandelt Anderungen an der
Eigenschaft
IsVirtualToggleButton.

. /// </summary>

. private static void

OnIsVirtualToggleButtonChanged
DependencyObject d

DependencyPropertyChangedEventA

rgs e

6.

7. IInputElement element = d
as IInputElement

8. element null

9.

10. bool)e.NewValue

11.

12.

element.MouselLeftButtonDown
OnMouselLeftButtonDown
13. element.KeyDown
OnKeyDown
14.
15.
16.
17.
element.MouselLeftButtonDown
OnMouselLeftButtonDown
18. element.KeyDown
OnKeyDown
19.
20.

21.

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Tipps und Tricks

Last
update:
2022/09/23
06:38

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663907909

15.

16.

17.
18.

19.
20.
21.
22.
23.
24.

25.
26.

27.
28.
29.
30.
31.
32.

33.
34.
35.
36.

37.
38.

Key.Enter

bool) (sender as
DependencyObject
.GetValue(KeyboardNavigation.Ac
ceptsReturnProperty
UpdateIsChecked(sender as
DependencyObject
e.Handled = true

private static void
UpdateIsChecked (DependencyObjec
t d

Nullable<bool> isChecked
GetIsChecked(d
isChecked true

SetIsChecked(d
GetIsThreeState(d
Nullable<bool>)null

Nullable<bool>)false

SetIsChecked(d
isChecked.HasValue

The UpdatelsChecked method sets the attached
IsChecked property on an element, which is a
TreeViewltem in this demo. Setting an attached
property on a TreeViewltem has no effect by

itself.

In order to have the application use that

property value, it must be bound to something
In this application, it is bound to the IsChecked

property of a FooViewModel object. The following

Style

is assigned to the TreeView’s

IltemContainerStyle property. It ties a
TreeViewltem to a FooViewModel object and
adds the virtual ToggleButton behavior that we
just examined.

Wenn ein TreeViewltem sein KeyDown Ereignis
auslost, wird diese Logik ausgeflhrt:

w

N o o b

10.
11.

12.
13.
14,

15.

16.

17.
18.

19.
20.
21.
22.
23.
24.

25.

26.

27.
28.

. private static void

OnKeyDown(object sender
KeyEventArgs e

e.OriginalSource
sender
e.Key Key.Space

// 1gnore alt+space
which invokes the system menu

Keyboard.Modifiers

ModifierKeys.Alt
ModifierKeys.Alt

UpdateIsChecked(sender as

DependencyObject
e.Handled = true
e.Key
Key.Enter
bool) (sender as
DependencyObject

.GetValue(KeyboardNavigation.Ac
ceptsReturnProperty

UpdateIsChecked(sender as
DependencyObject

e.Handled true

private static void
UpdateIsChecked (DependencyObjec
td

Nullable<bool> isChecked
GetIsChecked(d
isChecked true

https://jmz-elektronik.ch/dokuwiki/

Printed on 2026/01/31 19:10

2026/01/31 19:10 19/20 Tipps und Tricks
1. <Style 29. SetIsChecked(d
X:Key="TreeViewItemStyle" 30. GetIsThreeState(d
TargetType="TreeViewItem"> 31. Nullable<bool>)null
2. <Setter Property="IsExpanded" 32.
Value="True" /> Nullable<bool-)false
3. <Setter Property="IsSelected" 33.
Value="{Binding 34.
IsInitiallySelected, 35.
Mode=0neTime}" /> 36. SetIsChecked(d
4. <Setter isChecked.HasValue
Property="KeyboardNavigation.Ac 37.
ceptsReturn” Value="True" /> 38.
5. <Setter
Property="dw:VirtualToggleButto _
n.IsVirtualToggleButton" Die UpdatelsChecked-Methode setzt die
Value="True" /> angehangte IsChecked-Eigenschaft auf ein
6. <Setter Element, das in dieser Demo ein TreeViewltem
Property="dw:VirtualToggleButto ist. Das Setzen einer angehangten Eigenschaft
n.IsChecked" Value="{Binding auf einem TreeViewltem hat selbst keinen Effekt.
IsChecked}" /> Damit die Anwendung diesen Eigenschaftswert
7. </Style> verwenden kann, muss er an etwas gebunden

This piece ties the entire puzzle together. Note
that the attached
KeyboardNavigation.AcceptsReturn property is
set to true on each TreeViewltem so that the
VirtualToggleButton will toggle its check state in
response to the Enter key. The first Setter in the
Style, which sets the initial value of each item's
IsExpanded property to true, ensures that
Requirement 8 is met.

CheckBox Bug in Aero Theme

I must point out one strange, and disappointing,
issue. The Aero theme for WPF’s CheckBox
control has a problem in .NET 3.5. When it
moves from the ‘Indeterminate’ state to the
‘Checked’ state, the background of the box does
not update properly until you move the mouse
cursor over it. You can see this in the screenshot
below:

sein. In dieser Anwendung ist sie an die
IsChecked Eigenschaft eines FooViewModel
Objekts gebunden. Der folgende Style wird der
ltemContainerStyle Eigenschaft des TreeViews
zugewiesen. Er bindet ein TreeViewltem an ein
FooViewModel Objekt und fugt das virtuelle
ToggleButton Verhalten hinzu, das wir gerade
untersucht haben.

. <Style
x:Key="TreeViewItemStyle"
TargetType="TreeViewItem">

<Setter Property="IsExpanded"
Value="True" />

3. <Setter Property="IsSelected"
Value="{Binding
IsInitiallySelected,
Mode=0neTime}" />

4, <Setter

Property="KeyboardNavigation.Ac
ceptsReturn” Value="True" />

<Setter
Property="dw:VirtualToggleButto
n.IsVirtualToggleButton"
Value="True" />

<Setter
Property="dw:VirtualToggleButto
n.IsChecked" Value="{Binding
IsChecked}" />

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last
update:
2022/09/23
06:38

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663907909

CheckBoxes

Oagger
[¥|Machete

[¥|sword
4 [J]Vehicles
[¥| Apache Helicopter
[¥]submarine
[¥|Tank
4 [¥IGuns
V| AK 47
[¥|Beretta
Uz

oo e |

Uncheck All

7. </Style>

Dieses Teil fugt das gesamte Puzzle zusammen.
Beachten Sie, dass die angehangte Eigenschaft
KeyboardNavigation.AcceptsReturn fur jedes
TreeViewltem auf true gesetzt ist, so dass der
VirtualToggleButton seinen Prifstatus als
Reaktion auf die Enter-Taste umschaltet. Der
erste Setter im Style, der den Anfangswert der
IsExpanded-Eigenschaft jedes Elements auf true
setzt, stellt sicher, dass Anforderung 8 erfullt ist.

CheckBox-Fehler im Aero-Thema Ich muss auf
ein seltsames und enttauschendes Problem
hinweisen. Das Aero-Thema fur das CheckBox-
Steuerelement von WPF hat ein Problem in .NET

From:
https://jmz-elektronik.ch/dokuwiki/ - Bicher & Dokumente

Permanent link:

https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663907909 :f

Last update: 2022/09/23 06:38

3.5. Wenn es vom Zustand ,Unbestimmt” in den
Zustand ,Gepruft” wechselt, wird der
Hintergrund des Kastchens nicht richtig
aktualisiert, bis Sie den Mauszeiger dartber
bewegen. Sie kdnnen dies im folgenden
Screenshot sehen:

E=3/E0R Cx7

CheckBoxes

Dagger
¥ Machete

¥ sword
4 [J]Vehicles
[¥| Apache Helicopter
[¥|Submarine
¥ITank
4 [VIGuns
VIAK 47
[¥|Beretta
Wuzi

Uncheck All

~

https://jmz-elektronik.ch/dokuwiki/

Printed on 2026/01/31 19:10

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Adotnetgrundlagen%3Atipps_tricks&media=start:visualstudio2017:programmieren:tipps_tricks:screenshot_aero.png
https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Adotnetgrundlagen%3Atipps_tricks&media=start:visualstudio2017:programmieren:tipps_tricks:screenshot_aero.png
https://jmz-elektronik.ch/dokuwiki/
https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663907909

	Inhaltsverzeichnis
	Tipps und Tricks
	ContextSwitchDeadlock erkennen und umgehen
	Fehlermeldung Visual Studio 2019
	Erklärung
	Lösung

	In Visual Studio 2019 zusätzliche Debug Informationen auschalten
	Zusätzliche Debug Informationen

	Window und Screen Mouse Koordinaten ermitteln
	Demo Code

	WPF, DependencyProperty.Register() or .RegisterAttached
	How to Test Your Internal Classes in C# (NUnit)
	Benefits of the internal access modifier
	How to test internal methods and classes?
	.Net Core
	.Net Standard project
	Conclusion

	Working with Checkboxes in the WPF TreeView / Arbeiten mit Kontrollkästchen in der WPF TreeView
	Introduction
	Background
	The Devil is in the Details
	Functional Requirements
	Putting the Smarts in a ViewModel
	TreeView Configuration
	Turning a TreeViewItem into a ToggleButton
	CheckBox Bug in Aero Theme
	Einführung
	Hintergrund
	Der Teufel steckt im Detail
	Funktionale Anforderungen
	Die Intelligenz in ein ViewModel packen
	TreeView Konfiguration
	Einen TreeViewItem in einen ToggleButton verwandeln

