
2026/01/31 19:07 1/2 Tipps und Tricks

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Inhaltsverzeichnis
Tipps und Tricks 1 ..

ContextSwitchDeadlock erkennen und umgehen 1 ..
Fehlermeldung Visual Studio 2019 1 ..
Erklärung 2 ...
Lösung 2 ..

In Visual Studio 2019 zusätzliche Debug Informationen auschalten 2
Zusätzliche Debug Informationen 2 ...

Window und Screen Mouse Koordinaten ermitteln 2 ...
WPF, DependencyProperty.Register() or .RegisterAttached 3 ..
How to Test Your Internal Classes in C# (NUnit) 4 ...

Working with Checkboxes in the WPF TreeView / Arbeiten mit Kontrollkästchen in der
WPF TreeView 8 ...

Last
update:
2022/09/23
06:25

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663907124

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/31 19:07

2026/01/31 19:07 1/20 Tipps und Tricks

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Tipps und Tricks

Hier finden Sie verschiedene Tipps und Tricks rund um C#, .NET und Visual Studio (Verschieden
Versionen).

ContextSwitchDeadlock erkennen und umgehen

Fehlermeldung Visual Studio 2019

Message
ContextSwitchDeadlock wurde erkannt. Message: Die CLR konnte 60 Sekunden lang keinen Übergang
vom COM-Kontext 0x2c32f90 zum COM-Kontext 0x2c331e0 durchführen. Der Thread, der Besitzer
des Zielkontexts/-apartments ist, wartet entweder, ohne Meldungen zu verschieben, oder verarbeitet
eine äußerst lang dauernde Operation, ohne Windows-Meldungen zu verschieben. Eine solche
Situation beeinträchtigt in der Regel die Leistung und kann sogar dazu führen, dass die Anwendung
nicht mehr reagiert oder die Speicherauslastung immer weiter zunimmt. Zur Vermeidung dieses
Problems sollten alle STA-Threads (Singlethread-Apartment) primitive Typen verwenden, die beim
Warten Meldungen verschieben (z.B. CoWaitForMultipleHandles), und bei lange dauernden
Operationen generell Meldungen verschieben.

Diese tritt beim abfragen von Fenstertitel der Anwendungen auf, der Code dazu:

public string Text1.
 {2.
 get3.
 {4.
 try5.
 {6.
 StringBuilder title = new StringBuilder(260, 260);7.
 UnManagedMethods.GetWindowText(this.hWnd, title, title.Capacity);8.
 return title.ToString();9.
 }10.
 catch{return "";}11.
 }12.
 }13.
 14.
private class UnManagedMethods15.
 {16.
 [DllImport("user32", CharSet = CharSet.Auto)]17.
 public extern static int GetWindowText(IntPtr hWnd, StringBuilder18.
lpString, int cch);
 ...19.
 }20.

Der code wird in Visual Studio 2019 im Debug Modus ausgeführt. Wie kann man dieses „hängen
bleiben“ erkennen und abbrechen, gibt es da überhaupt eine Möglichkeit?

Last
update:
2022/09/23
06:25

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663907124

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/31 19:07

Erklärung

Wenn man im Debug Modus anhält, dann werden auch keine Windows-Nachrichten mehr verarbeitet.
Das heißt, die COM-Komponente verarbeitet eine Windows-Nachricht, die verursacht, dass in deinen
Code gesprungen wird. Sollte dann binnen 60 Sekunden keine Rückantwort kommen, dann erhälst Du
diese Fehlermeldung, weil die COM Komponente keine weiteren Nachrichten verarbeiten kann
derweil.

Lösung

Einfach die Exception in den Visual Studio Einstellungen abschalten.

In Visual Studio 2019 zusätzliche Debug Informationen
auschalten

Zusätzliche Debug Informationen

 Die Standardeinstellungen in Visual
Studio 2019 zeigt oben auf jedem WPF
Fenster zusätziche Tool zum debugen des
Programm an. Nachteil ist, dass damit
auch darunterliegende Komponenten
verdeckt werden. Mit folgenden Schritten
lässt sich das auch ausschalten:

English Version : Tools → Options → Debugging → General → Enable UI Debugging Tools for XAML
Deutsche Version : Extras → Optionen → Debugging → Allgemein → UI-Debugtool für XAML aktivieren

Setzen oder entfernen Sie einfach das Häckchen.

Window und Screen Mouse Koordinaten ermitteln

Wie wir alle wissen gibt es Methoden die uns die Mausposition relativ zu anderen controls zurückgibt.
Doch manchmal möchte wir auch die Mausposition ausserhalb des Fensters wissen. Diese
Kurzanleitung soll einen kleinen Tipp sein.

#Mit folgenden zwei Methoden lässt sich die Mausposition relativ zu1.
einem control ermitteln:

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Adotnetgrundlagen%3Atipps_tricks&media=start:visualstudio2017:programmieren:tipps_tricks:wpf_debug_windows_tools.png

2026/01/31 19:07 3/20 Tipps und Tricks

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Mouse.GetPosition(IInputElement relativeTo)2.
MouseEventArgs.GetPosition(IInputElement relativeTo).3.

Demo Code

Bei diesem Beispiel wird die Mausposition auf der obersten Titelleiste (WindowTitle) angezeigt. Die
Koordination sind innerhalb des Fensters auf die Zeichnungsfläche bezogen und ausserhalb des
Fensters werden die Screen Koordinaten angezeigt.

namespace CoreLoader.Views1.
 2.
 3.
{4.
 /// <summary>5.
 /// Interaction logic for Main.xaml6.
 /// </summary>7.
 public partial class Main : Window8.
 {9.
 public Main(object datacontex)10.
 {11.
 InitializeComponent();12.
 DataContext = datacontex;13.
 14.
 CompositionTarget.Rendering += OnRendering;15.
 }16.
 17.
 private void OnRendering(object sender, EventArgs e)18.
 {19.
 var x = Mouse.GetPosition(this).X;20.
 var y = Mouse.GetPosition(this).Y;21.
 this.Title = Math.Round(y, 0).ToString() + " | " +22.
Math.Round(x, 0).ToString();
 }23.
 }24.
}25.

Der Event OnRendering() wird vor dem Zeichnen des WPF Fenster ausgeführt. Dieses Beispiel ist
eine verkürzte Abschrift und wurde zur Sicherung kopiert.

WPF, DependencyProperty.Register() or .RegisterAttached

https://getandplay.github.io/2019/05/13/How-does-WPF-application-get-mouse-position-when-mouse-stay-outside-window/
https://getandplay.github.io/2019/05/13/How-does-WPF-application-get-mouse-position-when-mouse-stay-outside-window/

Last
update:
2022/09/23
06:25

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663907124

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/31 19:07

English Deutsch

I assume you meant
DependencyProperty.Register and
DependencyProperty.RegisterAttached.
DependencyProperty.Register is used to register
normal DependencyProperty. You can see those
as just regular properties, with the added twist
that they can take part in WPF's DataBinding,
animations etc. In fact, they are exposed as
normal property (with the get and set accessors)
on top of the untyped
DependencyObject.SetValue / GetValue. You
declare those as part of your type. Attached
properties on the other hand are different. They
are meant as an extensibility system. If you have
ever used Extenders in Windows Forms, they are
kind of similar. You declare them as part of a
type, to be used on another type. They are used
a lot for layout-related information. For example,
Canvas needs Left/Top coordinates, Grid needs a
Row and a Column, DockPanel needs a Dock
information etc. It would be a mess if all of this
had to be declared on every Control that can be
layouted. So they are declared on the
corresponding panel, but used on any Control.
You can use the same thing to attach any
information to a DependencyObject if you need
to. It can come in handy to just declare a piece of
information that you can set in xaml just to be
used later in a style for an existing class for
example. So those two kind of
DependencyProperty serve a very different
purpose. Regular properties (registered through
Register()) are used just like normal properties
as part of the interface of your type. Attached
properties (registered through
RegisterAttached()) are used as an extensibility
point on existing classes. Hope that clarifies it a
bit.

Ich nehme an, Sie meinten
DependencyProperty.Register und
DependencyProperty.RegisterAttached.
DependencyProperty.Register wird verwendet, um
normale DependencyProperty zu registrieren. Sie
können diese als ganz normale Eigenschaften
betrachten, mit dem zusätzlichen Vorteil, dass sie
an WPFs DataBinding, Animationen usw.
teilnehmen können. In der Tat sind sie als normale
Eigenschaft (mit den Get- und Set-Accessoren) auf
dem untypisierten DependencyObject.SetValue /
GetValue ausgesetzt. Sie deklarieren diese als Teil
Ihres Typs. Angehängte Eigenschaften hingegen
sind anders. Sie sind als ein System zur
Erweiterung gedacht. Wenn Sie schon einmal
Extender in Windows Forms verwendet haben, sind
sie sehr ähnlich. Sie werden als Teil eines Typs
deklariert, um in einem anderen Typ verwendet zu
werden. Sie werden häufig für layoutbezogene
Informationen verwendet. Zum Beispiel braucht
Canvas Links/Oben-Koordinaten, Grid braucht eine
Row und eine Column, DockPanel braucht eine
Dock-Information usw. Es wäre unübersichtlich,
wenn all dies für jedes Steuerelement, das für das
Layout verwendet werden kann, deklariert werden
müsste. Also werden sie auf dem entsprechenden
Panel deklariert, aber auf jedem Control
verwendet. Sie können dasselbe tun, um beliebige
Informationen an ein DependencyObject
anzuhängen, wenn Sie es brauchen. Es kann sehr
nützlich sein, eine Information zu deklarieren, die
man in xaml einstellen kann, um sie später in
einem Stil für eine bestehende Klasse zu
verwenden, zum Beispiel. Diese beiden Arten von
DependencyProperty dienen also einem sehr
unterschiedlichen Zweck. Reguläre Eigenschaften
(registriert durch Register()) werden wie normale
Eigenschaften als Teil der Schnittstelle Ihres Typs
verwendet. Angehängte Eigenschaften (registriert
durch RegisterAttached()) werden als
Erweiterungspunkt für bestehende Klassen
verwendet. Ich hoffe, das macht es ein wenig
klarer.

--Denis Troller

How to Test Your Internal Classes in C# (NUnit)

How to test internal classes? (microsoft,) 2019-12-10 by Johnny Graber

https://stackoverflow.com/questions/910579/dependencyproperty-register-or-registerattached#914030
https://improveandrepeat.com/2019/12/how-to-test-your-internal-classes-in-c/

2026/01/31 19:07 5/20 Tipps und Tricks

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

One of the most important concepts of object-oriented design is encapsulation. You try to hide all the
internal things of a class from the other developers and only offer them a subset of functionality to
use. You can achieve this by setting an appropriate access modifier for your methods and classes:

public: The type or member can be accessed by any other code in the same assembly or
another assembly that references it.
private: The type or member can be accessed only by code in the same class or struct.
protected: The type or member can be accessed only by code in the same class, or in a class
that is derived from that class.
internal: The type or member can be accessed by any code in the same assembly, but not
from another assembly.
protected internal: The type or member can be accessed by any code in the assembly in
which it is declared, or from within a derived class in another assembly. (as in protected OR
internal)
private protected: The type or member can be accessed only within its declaring assembly,
by code in the same class or in a type that is derived from that class. (as in private OR
protected)

Public and private are the two most used access modifiers. You find them in all the examples, they
are straight forward to use and do exactly what you expect. They are a great help to manage access
to the methods in your classes and the classes themselves.

If we look at bigger parts of our application, we use code from different assemblies or NuGet
packages. Those distribution formats have their own boundaries that you can use to enforce
encapsulation. Public and private access modifiers are again a great help. However, over the years I
appreciated the internal access modifier more and more.

Benefits of the internal access modifier

There is always that code that you need but has no place to go. It is not a class on its own and it does
not fit to any other. At some point you stop searching for the right place and put it into a class called
MyHelper. That code can’t be private, then many of your classes need them. And you do not want to
make it public, then this code should not be called from outside your assembly.

The internal access modifier is exactly made for such use cases. By declaring the class or just a few
methods as internal, you can access them from everywhere in your assembly but not from outside. All
you need to do is to write internal instead of public or private:

public class MyHelper1.
{2.
 internal string InternalMethod()3.
 {4.
 return "should only be visible to the class itself & tests";5.
 }6.
 7.
 public string PublicMethod()8.
 {9.
 return "Everyone can call this method";10.
 }11.
 12.

Last
update:
2022/09/23
06:25

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663907124

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/31 19:07

 private string PrivateMethod()13.
 {14.
 return "you should not be able to call this directly";15.
 }16.
}17.

The users of your assembly or NuGet package do not know that this helper method exist. That allows
you to freely move that code around to a better location or refactor it until you find a more fitting
abstraction. All that without the need to change code outside your assembly – then no one else can
call it directly.

How to test internal methods and classes?

That helper code you marked with internal is most often important. Therefore, you should write
extensive tests for those classes and methods. But how can you do that when you can’t access that
code from outside your assembly?

The .NET Framework offers the InternalsVisibleTo attribute to specify which other assemblies can
access the internal methods and classes inside this assembly. All you need to do is to add this
attribute to the AssemblyInfo.cs file and pass the name of your test assembly to the constructor:

[assembly: InternalsVisibleTo("Logic.Tests")]1.

When you put this attribute to the AssemblyInfo.cs file, then all internal methods can be accessed by
code inside the Logic.Tests assembly. To test your internal code this behaviour is exactly what you
want. If this is too much, you can add this attribute in a specific class and only allow access to the
internal methods of this class.

As soon as you recompile your assembly, the code in your test assembly can access your internal
methods:

2026/01/31 19:07 7/20 Tipps und Tricks

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

.Net Core

In .Net Core you do not have an AssemblyInfo.cs file. You can add one with the Add New Item dialog
and set the attribute there in the same way you would do that in the .Net Full Framework and get
exactly the same benefits.

.Net Standard project

As pointed out by Miguel Alho in the comments, you can add an ItemGroup in your *.csproj file to get
the same effect. For that, paste this code as the last block before the closing project tag:

<ItemGroup>1.
 <AssemblyAttribute2.
Include="System.Runtime.CompilerServices.InternalsVisibleTo">
 <_Parameter1>Logic.Tests</_Parameter1>3.
 </AssemblyAttribute>4.
</ItemGroup>5.

Last
update:
2022/09/23
06:25

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663907124

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/31 19:07

Conclusion

Use the internal access modifier the next time you have helper code that you need but no one else
should call. This little keyword will help you to hide your mess inside your assembly and still allows
you to write tests. With internal you get the best of both worlds without breaking encapsulation.

2019-12-10 by Johnny Graber

Working with Checkboxes in the WPF
TreeView / Arbeiten mit Kontrollkästchen in
der WPF TreeView

Introduction

This article reviews a WPF TreeView whose items
contain checkboxes. Each item is bound to a
ViewModel object. When a ViewModel object’s
check state changes, it applies simple rules to
the check state of its parent and child items.
This article also shows how to use the attached
behavior concept to turn a TreeViewItem into a
virtual ToggleButton, which helps make the
TreeView’s keyboard interaction simple and
intuitive.

This article assumes that the reader is already
familiar with data binding and templates,
binding a TreeView to a ViewModel, and
attached properties.

Background

It is very common to have a TreeView whose
items are checkboxes, such as when presenting
the user with a hierarchical set of options to
select. In some UI platforms, such as WinForms,
the standard TreeView control offers built-in
support for displaying checkboxes in its items.
Since element composition and rich data binding
are two core aspects of WPF, the WPF TreeView
does not offer intrinsic support for displaying
checkboxes. It is very easy to declare a
CheckBox control in a TreeView’s ItemTemplate
and suddenly every item in the tree contains a

Einführung

Dieser Artikel beschreibt eine WPF TreeView,
deren Elemente Kontrollkästchen enthalten.
Jedes Element ist an ein ViewModel Objekt
gebunden. Wenn sich der Prüfstatus eines
ViewModel-Objekts ändert, wendet es einfache
Regeln auf den Prüfstatus seiner
übergeordneten und untergeordneten Elemente
an. Dieser Artikel zeigt auch, wie man das
angehängte Verhaltenskonzept verwenden kann,
um ein TreeViewItem in einen virtuellen
ToggleButton zu verwandeln, der hilft, die
Tastaturinteraktion des TreeViews einfach und
intuitiv zu gestalten.

Dieser Artikel geht davon aus, dass der Leser
bereits mit Datenbindung und Templates, der
Bindung eines TreeViews an ein ViewModel und
angehängten Eigenschaften vertraut ist.

Hintergrund

Es ist sehr üblich, einen TreeView zu haben,
dessen Elemente Kontrollkästchen sind, z.B.
wenn dem Benutzer ein hierarchischer Satz von
Optionen zur Auswahl präsentiert wird. In
einigen UI-Plattformen, wie z.B. WinForms, bietet
das Standard-TreeView-Steuerelement
integrierte Unterstützung für die Anzeige von
Kontrollkästchen in seinen Elementen. Da
Elementkomposition und reichhaltige

https://improveandrepeat.com/2019/12/how-to-test-your-internal-classes-in-c/

2026/01/31 19:07 9/20 Tipps und Tricks

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

CheckBox. Add a simple {Binding} expression to
the IsChecked property, and suddenly the check
state of those boxes is bound to some property
on the underlying data objects. It would be
superfluous, at best, for the WPF TreeView to
have an API specific to displaying checkboxes in
its items.

The Devil is in the Details

This sounds too good to be true, and it is.
Making the TreeView “feel right,” from a
keyboard navigation perspective, is not quite as
simple. The fundamental problem is that as you
navigate the tree via arrow keys, a
TreeViewItem will first take input focus, and then
the CheckBox it contains will take focus upon the
next keystroke. Both the TreeViewItem and
CheckBox controls are focusable. The result is
that you must press an arrow key twice to
navigate from item to item in the tree. That is
definitely not an acceptable user experience,
and there is no simple property that you can set
to make it work properly. I have already brought
this issue to the attention of a certain key
member on the WPF team at Microsoft, so they
might address it in a future version of the
platform.

Functional Requirements

Before we start to examine how this demo
program works, first we will review what it does.
Here is a screenshot of the demo application in
action:

Datenbindung zwei Kernaspekte von WPF sind,
bietet das WPF TreeView keine integrierte
Unterstützung für die Anzeige von
Kontrollkästchen. Es ist sehr einfach, ein
CheckBox-Steuerelement im ItemTemplate eines
TreeViews zu deklarieren und plötzlich enthält
jedes Element im Baum eine CheckBox. Fügen
Sie der IsChecked-Eigenschaft einen einfachen
{Binding}-Ausdruck hinzu, und plötzlich ist der
Prüfstatus dieser Boxen an eine Eigenschaft der
zugrunde liegenden Datenobjekte gebunden. Es
wäre bestenfalls überflüssig, dass die WPF
TreeView eine API speziell für die Anzeige von
Checkboxen in ihren Elementen hat.

Der Teufel steckt im Detail

Das klingt zu schön, um wahr zu sein, und das
ist es auch. Den TreeView aus der Perspektive
der Tastaturnavigation „richtig“ zu machen, ist
nicht ganz so einfach. Das grundsätzliche
Problem ist, dass ein TreeViewItem beim
Navigieren durch den Baum mit den Pfeiltasten
zuerst den Eingabefokus erhält und dann die
CheckBox, die es enthält, beim nächsten
Tastendruck den Fokus erhält. Sowohl das
TreeViewItem- als auch das CheckBox-
Steuerelement sind fokussierbar. Das Ergebnis
ist, dass Sie eine Pfeiltaste zweimal drücken
müssen, um im Baum von einem Element zum
anderen zu navigieren. Das ist definitiv keine
akzeptable Benutzererfahrung, und es gibt keine
einfache Eigenschaft, die Sie einstellen können,
damit es richtig funktioniert. Ich habe bereits ein
bestimmtes Mitglied des WPF-Teams bei
Microsoft auf dieses Problem aufmerksam
gemacht, damit es in einer zukünftigen Version
der Plattform behoben werden kann.

Funktionale Anforderungen

Bevor wir untersuchen, wie dieses
Demoprogramm funktioniert, sollten wir uns
zunächst ansehen, was es tut. Hier ist ein
Screenshot der Demoanwendung in Aktion:

Last
update:
2022/09/23
06:25

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663907124

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/31 19:07

Now let’s see what the functional requirements
are:

Requirement : Each item in the tree must1.
display a checkbox that displays the text
and check state of an underlying data
object.
Requirement : Upon an item being2.
checked or unchecked, all of its child items
should be checked or unchecked,
respectively.
Requirement : If an item’s descendants do3.
not all have the same check state, that
item’s check state must be
‘indeterminate.’
Requirement : Navigating from item to4.
item should require only one press of an
arrow key.
Requirement : Pressing the Spacebar or5.
Enter keys should toggle the check state
of the selected item.
Requirement : Clicking on an item’s6.
checkbox should toggle its check state,
but not select the item.
Requirement : Clicking on an item’s7.
display text should select the item, but not
toggle its check state.
Requirement : All items in the tree should8.
be in the expanded state by default.

I suggest you copy those requirements and
paste them into your favorite text editor, such as
Notepad, because we will reference them

Schauen wir uns nun die funktionalen
Anforderungen an:

Anforderung : Jedes Element in der1.
Baumstruktur muss ein Kontrollkästchen
enthalten, das den Text und den
Kontrollstatus eines zugrunde liegenden
Datenobjekts anzeigt.
Anforderung : Wenn ein Element2.
angekreuzt oder nicht angekreuzt wird,
sollten alle seine untergeordneten
Elemente angekreuzt bzw. nicht
angekreuzt werden.
Anforderung : Wenn die Nachkommen3.
eines Eintrags nicht alle den gleichen
Prüfstatus haben, muss der Prüfstatus
dieses Eintrags „unbestimmt“ sein.
Anforderung : Das Navigieren von Element4.
zu Element sollte nur einen einzigen Druck
auf eine Pfeiltaste erfordern.
Anforderung : Das Drücken der Leertaste5.
oder der Eingabetaste sollte den
Prüfstatus des ausgewählten Eintrags
umschalten.
Anforderung : Ein Klick auf das6.
Kontrollkästchen eines Eintrags soll den
Kontrollstatus umschalten, aber den
Eintrag nicht auswählen.
Anforderung : Das Anklicken des7.
Anzeigetextes eines Eintrags soll den
Eintrag auswählen, aber nicht seinen
Markierungsstatus umschalten.
Anforderung : Alle Elemente in der8.

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Adotnetgrundlagen%3Atipps_tricks&media=start:visualstudio2017:programmieren:tipps_tricks:screenshot.png
https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Adotnetgrundlagen%3Atipps_tricks&media=start:visualstudio2017:programmieren:tipps_tricks:screenshot.png

2026/01/31 19:07 11/20 Tipps und Tricks

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

throughout the rest of the article by number.

Putting the Smarts in a ViewModel

As explained in my ‘Simplifying the WPF
TreeView by Using the ViewModel Pattern’
article, the TreeView was practically designed to
be used in conjunction with a ViewModel. This
article takes that idea further, and shows how
we can use a ViewModel to encapsulate
application-specific logic related to the check
state of items in the tree. In this article, we will
examine my FooViewModel class, which the
following interface describes:

interface IFooViewModel :1.
INotifyPropertyChanged
{2.
 List<FooViewModel> Children3.
{ get; }
 bool? IsChecked { get; set;4.
}
 bool IsInitiallySelected {5.
get; }
 string Name { get; }6.
}7.

The most interesting aspect of this ViewModel
class is the logic behind the IsChecked property.
This logic satisfies Requirements 2 and 3, seen
previously. The FooViewModel’s IsChecked logic
is below:

/// <summary>1.
/// Gets/sets the state of the2.
associated UI toggle (ex.
CheckBox).
/// The return value is3.
calculated based on the check
state of all
/// child FooViewModels.4.
Setting this property to true
or false
/// will set all children to5.
the same check state, and
setting it
/// to any value will cause the6.
parent to verify its check
state.

Baumstruktur sollten sich standardmäßig
im erweiterten Zustand befinden.

Ich schlage vor, Sie kopieren diese
Anforderungen und fügen sie in Ihren
bevorzugten Texteditor ein, z. B. in Notepad, da
wir sie im weiteren Verlauf des Artikels
nummerisch referenzieren werden.

Die Intelligenz in ein ViewModel packen

Wie in meinem Artikel 'Simplifying the WPF
TreeView by Using the ViewModel Pattern'
(Vereinfachung der WPF-TreeView durch
Verwendung des ViewModel-Musters) erläutert,
wurde die TreeView praktisch dafür entwickelt,
in Verbindung mit einem ViewModel verwendet
zu werden. Dieser Artikel führt diese Idee weiter
und zeigt, wie wir ein ViewModel verwenden
können, um anwendungsspezifische Logik in
Bezug auf den Prüfstatus von Elementen im
Baum zu kapseln. In diesem Artikel werden wir
meine FooViewModel-Klasse untersuchen, die
durch die folgende Schnittstelle beschrieben
wird:

interface IFooViewModel :1.
INotifyPropertyChanged
{2.
 List<FooViewModel> Children3.
{ get; }
 bool? IsChecked { get; set;4.
}
 bool IsInitiallySelected {5.
get; }
 string Name { get; }6.
}7.

///Ruft den Zustand des1.
zugehörigen UI-Toggles (z.B.
CheckBox) ab bzw. setzt ihn.
///Der Rückgabewert wird auf2.
der Grundlage des Prüfstatus
aller untergeordneten
///FooViewModelle berechnet.3.
Wenn diese Eigenschaft auf true
oder false gesetzt wird,
///erhalten alle4.
untergeordneten Modelle den

Last
update:
2022/09/23
06:25

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663907124

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/31 19:07

/// </summary>7.
public bool? IsChecked8.
{9.
 get { return _isChecked; }10.
 set {11.
this.SetIsChecked(value, true,
true); }
}12.
 13.
void SetIsChecked(bool? value,14.
bool updateChildren, bool
updateParent)
{15.
 if (value == _isChecked)16.
 return;17.
 18.
 _isChecked = value;19.
 20.
 if (updateChildren &&21.
_isChecked.HasValue)
 this.Children.ForEach(c22.
=> c.SetIsChecked(_isChecked,
true, false));
 23.
 if (updateParent && _parent24.
!= null)

25.
_parent.VerifyCheckState();
 26.

27.
this.OnPropertyChanged("IsCheck
ed");
}28.
 29.
void VerifyCheckState()30.
{31.
 bool? state = null;32.
 for (int i = 0; i <33.
this.Children.Count; ++i)
 {34.
 bool? current =35.
this.Children[i].IsChecked;
 if (i == 0)36.
 {37.
 state = current;38.
 }39.
 else if (state !=40.
current)
 {41.
 state = null;42.

gleichen Prüfstatus,
///und wenn sie auf einen5.
beliebigen Wert gesetzt wird,
überprüft das übergeordnete
Modell seinen Prüfstatus.
public bool? IsChecked6.
{7.
 get { return _isChecked; }8.
 set {9.
this.SetIsChecked(value, true,
true); }
}10.
 11.
void SetIsChecked(bool? value,12.
bool updateChildren, bool
updateParent)
{13.
 if (value == _isChecked)14.
 return;15.
 16.
 _isChecked = value;17.
 18.
 if (updateChildren &&19.
_isChecked.HasValue)
 this.Children.ForEach(c20.
=> c.SetIsChecked(_isChecked,
true, false));
 21.
 if (updateParent && _parent22.
!= null)

23.
_parent.VerifyCheckState();
 24.

25.
this.OnPropertyChanged("IsCheck
ed");
}26.
 27.
void VerifyCheckState()28.
{29.
 bool? state = null;30.
 for (int i = 0; i <31.
this.Children.Count; ++i)
 {32.
 bool? current =33.
this.Children[i].IsChecked;
 if (i == 0)34.
 {35.
 state = current;36.
 }37.

2026/01/31 19:07 13/20 Tipps und Tricks

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

 break;43.
 }44.
 }45.
 this.SetIsChecked(state,46.
false, true);
}47.

This strategy is specific to the functional
requirements I imposed upon myself. If you have
different rules regarding how and when items
should update their check state, simply adjust
the logic in those methods to suit your needs.

TreeView Configuration

Now it is time to see how the TreeView is able to
display checkboxes and bind to the ViewModel.
This is entirely accomplished in XAML. The
TreeView declaration is actually quite simple, as
seen below:

<TreeView1.
 x:Name="tree"2.

3.
ItemContainerStyle="{StaticReso
urce TreeViewItemStyle}"
 ItemsSource="{Binding4.
Mode=OneTime}"
 ItemTemplate="{StaticResource5.
CheckBoxItemTemplate}"
 />6.
</code7.
The TreeView’s ItemsSource8.
property is implicitly bound to
its DataContext, which inherits
a List<FooViewModel> from the
containing window. That list
only contains one ViewModel
object, but it is necessary to
put it into a collection
because ItemsSource is of type
IEnumerable.
 9.
TreeViewItem is a container of10.
visual elements generated by
the ItemTemplate. In this demo,
we assign the following
HierarchicalDataTemplate to the
tree's ItemTemplate property:
 11.

 else if (state !=38.
current)
 {39.
 state = null;40.
 break;41.
 }42.
 }43.
 this.SetIsChecked(state,44.
false, true);
}45.

In dieser Vorlage gibt es mehrere interessante
Punkte. Die Vorlage enthält eine CheckBox,
deren Eigenschaft Focusable auf false gesetzt
ist. Dadurch wird verhindert, dass die CheckBox
jemals den Eingabefokus erhält, was zur
Erfüllung von Anforderung 4 beiträgt. Sie fragen
sich vielleicht, wie wir die Anforderung 5 erfüllen
können, wenn die CheckBox nie den
Eingabefokus erhält. Wir werden dieses Problem
später in diesem Artikel behandeln, wenn wir
untersuchen, wie man das Verhalten eines
ToggleButtons an ein TreeViewItem anhängen
kann.

Die IsChecked-Eigenschaft der CheckBox ist an
die IsChecked-Eigenschaft eines FooViewModel-
Objekts gebunden, aber beachten Sie, dass die
Content-Eigenschaft nicht auf irgendetwas
gesetzt ist. Stattdessen befindet sich direkt
daneben ein ContentPresenter, dessen Inhalt an
die Eigenschaft Name eines FooViewModel-
Objekts gebunden ist. Wenn Sie auf eine
CheckBox klicken, wird standardmäßig der
Status der CheckBox umgeschaltet. Durch die
Verwendung eines separaten ContentPresenters,
anstatt die Content-Eigenschaft der CheckBox zu
setzen, können wir dieses Standardverhalten
vermeiden. Dies hilft uns, die Anforderungen 6
und 7 zu erfüllen. Wenn Sie auf das Kästchen in
der CheckBox klicken, ändert sich der Status des
Kontrollkästchens, aber das Klicken auf den
benachbarten Anzeigetext ändert sich nicht. In
ähnlicher Weise wählt ein Klick auf das Kästchen
in der CheckBox dieses Element nicht aus, aber
ein Klick auf den benachbarten Anzeigetext
schon.

Wir werden den ItemContainerStyle des
TreeViews im nächsten Abschnitt untersuchen.

Last
update:
2022/09/23
06:25

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663907124

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/31 19:07

<code C#12.
[enable_line_numbers="true",hig
hlight_lines_extra="0,"]>
<HierarchicalDataTemplate13.
 x:Key="CheckBoxItemTemplate"14.
 ItemsSource="{Binding15.
Children, Mode=OneTime}"
 >16.
 <StackPanel17.
Orientation="Horizontal">
 <!-- These elements are18.
bound to a FooViewModel object.
-->
 <CheckBox19.
 Focusable="False"20.
 IsChecked="{Binding21.
IsChecked}"

22.
VerticalAlignment="Center"
 />23.
 <ContentPresenter24.
 Content="{Binding Name,25.
Mode=OneTime}"
 Margin="2,0"26.
 />27.
 </StackPanel>28.
</HierarchicalDataTemplate>29.

There are several points of interest in that
template. The template includes a CheckBox
whose Focusable property is set to false. This
prevents the CheckBox from ever receiving input
focus, which assists in meeting Requirement 4.
You might be wondering how we will be able to
satisfy Requirement 5 if the CheckBox never has
input focus. We will address that issue later in
this article, when we examine how to attach the
behavior of a ToggleButton to a TreeViewItem.

The CheckBox’s IsChecked property is bound to
the IsChecked property of a FooViewModel
object, but notice that its Content property is not
set to anything. Instead, there is a
ContentPresenter directly next to it, whose
Content is bound to the Name property of a
FooViewModel object. By default, clicking
anywhere on a CheckBox causes it to toggle its
check state. By using a separate
ContentPresenter, rather than setting the
CheckBox’s Content property, we can avoid that

Einen TreeViewItem in einen ToggleButton
verwandeln

Im vorigen Abschnitt haben wir uns schnell eine
interessante Frage gestellt. Wenn die CheckBox
im TreeViewItem ihre Focusable-Eigenschaft auf
false gesetzt hat, wie kann sie dann als Reaktion
auf die Leertaste oder die Eingabetaste ihren
Prüfstatus umschalten? Da ein Element nur dann
Tastendrücke empfängt, wenn es den
Tastaturfokus hat, scheint es unmöglich zu sein,
die Anforderung 5 zu erfüllen. Denken Sie daran,
dass wir die Eigenschaft Focusable der CheckBox
auf false setzen mussten, damit die Navigation
von Element zu Element in der Baumstruktur
nicht mehrere Tastendrücke erfordert.

Dies ist ein kniffliges Problem: Wir können nicht
zulassen, dass die CheckBox jemals den
Eingabefokus hat, da dies die Navigation über
die Tastatur negativ beeinflusst, aber wenn das
Element, das sie enthält, ausgewählt ist, muss
sie irgendwie ihren Prüfstatus als Reaktion auf
bestimmte Tastendrücke umschalten. Dies
scheinen sich gegenseitig ausschließende
Anforderungen zu sein. Als ich auf diese Mauer
stieß, beschloss ich, die WPF-Jünger um Rat zu
fragen, und startete diesen Thread. Zu meiner
Überraschung war Dr. WPF bereits auf diese Art
von Problem gestoßen und hatte eine geniale
Lösung entwickelt, die sich leicht in meine
Anwendung integrieren ließ. Der gute Doktor
schickte mir den Code für eine
VirtualToggleButton-Klasse und war so
freundlich, mir zu erlauben, ihn in diesem Artikel
zu veröffentlichen.

Die Lösung des Doktors verwendet das, was John
Gossman als „angehängtes Verhalten“
bezeichnet. Die Idee ist, dass Sie eine
angehängte Eigenschaft auf ein Element setzen,
so dass Sie von der Klasse, die die angehängte
Eigenschaft exponiert, Zugriff auf das Element
erhalten können. Sobald diese Klasse Zugriff auf
das Element hat, kann sie Ereignisse an das
Element koppeln und als Reaktion auf das
Auslösen dieser Ereignisse das Element Dinge
tun lassen, die es normalerweise nicht tun
würde. Dies ist eine sehr bequeme Alternative
zum Erstellen und Verwenden von Unterklassen
und ist sehr XAML-freundlich.

2026/01/31 19:07 15/20 Tipps und Tricks

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

default behavior. This helps us satisfy
Requirements 6 and 7. Clicking on the box
element in the CheckBox will cause its check
state to change, but clicking on the neighboring
display text will not. Similarly, clicking on the
box in the CheckBox will not select that item, but
clicking on the neighboring display text will.

We will examine the TreeView’s
ItemContainerStyle in the next section.

Turning a TreeViewItem into a
ToggleButton

In the previous section, we quickly considered an
interesting question. If the CheckBox in the
TreeViewItem has its Focusable property set to
false, how can it toggle its check state in
response to the Spacebar or Enter key? Since an
element only receives keystrokes if it has
keyboard focus, it seems impossible for
Requirement 5 to be satisfied. Keep in mind; we
had to set the CheckBox’s Focusable property to
false so that navigating from item to item in the
tree does not require multiple keystrokes.

This is a tricky problem: we cannot let the
CheckBox ever have input focus because it
negatively affects keyboard navigation, yet,
when its containing item is selected, it must
somehow toggle its check state in response to
certain keystrokes. These seem to be mutually
exclusive requirements. When I hit this brick
wall, I decided to seek geek from the WPF
Disciples, and started this thread. Not to my
surprise, Dr. WPF had already encountered this
type of problem and devised a brilliant-
approaching-genius solution that was easy to
plug into my application. The good Doctor sent
me the code for a VirtualToggleButton class, and
was kind enough to allow me to publish it in this
article.

The Doctor’s solution uses what John Gossman
refers to as “attached behavior.” The idea is that
you set an attached property on an element so
that you can gain access to the element from
the class that exposes the attached property.
Once that class has access to the element, it can
hook events on it and, in response to those
events firing, make the element do things that it
normally would not do. It is a very convenient

In diesem Artikel sehen wir, wie man einem
TreeViewItem eine angehängte IsChecked-
Eigenschaft gibt, die umschaltet, wenn der
Benutzer die Leertaste oder die Eingabetaste
drückt. Diese angehängte IsChecked-Eigenschaft
ist an die IsChecked-Eigenschaft eines
FooViewModel-Objekts gebunden, das wiederum
an die IsChecked-Eigenschaft der CheckBox im
TreeViewItem gebunden ist. Diese Lösung
erweckt den Anschein, dass eine CheckBox ihren
Prüfstatus als Reaktion auf die Leertaste oder
die Eingabetaste umschaltet, aber in Wirklichkeit
wird ihre IsChecked-Eigenschaft als Reaktion auf
ein TreeViewItem aktualisiert, das einen neuen
Wert an die IsChecked-Eigenschaft des
ViewModels über Datenbindung überträgt.

Bevor ich fortfahre, sollte ich darauf hinweisen,
dass mir völlig klar ist, dass dies verrückt ist. Die
Tatsache, dass dies der sauberste Weg ist, eine
TreeView von Kontrollkästchen in WPF v3.5 zu
implementieren, zeigt mir, dass Microsoft diesen
Aspekt der Plattform vereinfachen muss. Bis
dahin ist dies jedoch wahrscheinlich der beste
Weg, die Funktion zu implementieren.

In dieser Demo machen wir nicht von allen
Funktionen der VirtualToggleButton-Klasse von
Dr. WPF Gebrauch. Sie bietet Unterstützung für
mehrere Dinge, die wir nicht benötigen, wie z. B.
die Verarbeitung von Mausklicks und die
Bereitstellung von Checkboxen mit drei
Zuständen. Wir brauchen nur die Unterstützung
für die angehängten Eigenschaften
IsVirtualToggleButton und IsChecked sowie das
Verhalten bei der Tastaturinteraktion, das sie
bietet.

Hier ist die Callback-Methode für die angehängte
IsVirtualToggleButton-Eigenschaft, die es dieser
Klasse ermöglicht, Zugriff auf TreeViewItems im
Baum zu erhalten:

Last
update:
2022/09/23
06:25

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663907124

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/31 19:07

alternative to creating and using subclasses, and
is very XAML-friendly.

In this article, we see how to give a
TreeViewItem an attached IsChecked property
that toggles when the user presses the Spacebar
or Enter key. That attached IsChecked property
binds to the IsChecked property of a
FooViewModel object, which is also bound to the
IsChecked property of the CheckBox in the
TreeViewItem. This solution gives the
appearance that a CheckBox is toggling its
check state in response to the Spacebar or Enter
key, but in reality, its IsChecked property
updates in response to a TreeViewItem pushing
a new value to the ViewModel’s IsChecked
property via data binding.

Before going any further, I should point out that I
fully recognize that this is crazy. The fact that
this is the cleanest way to implement a TreeView
of checkboxes in WPF v3.5 indicates, to me, that
Microsoft needs to simplify this aspect of the
platform. However, until they do, this is probably
the best way to implement the feature.

In this demo, we do not make use of all features
in Dr. WPF’s VirtualToggleButton class. It has
support for several things that we do not need,
such as handling mouse clicks and providing tri-
state checkboxes. We only need to make use of
its support for the attached
IsVirtualToggleButton and IsChecked properties
and the keyboard interaction behavior it
provides.

Here is the property-changed callback method
for the attached IsVirtualToggleButton property,
which is what enables this class to gain access
to TreeViewItems in the tree:

/// <summary>1.
/// Handles changes to the2.
IsVirtualToggleButton property.
/// </summary>3.
private static void4.
OnIsVirtualToggleButtonChanged(
 DependencyObject d,5.
DependencyPropertyChangedEventA
rgs e)

2026/01/31 19:07 17/20 Tipps und Tricks

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

{6.
 IInputElement element = d7.
as IInputElement;
 if (element != null)8.
 {9.
 if ((bool)e.NewValue)10.
 {11.

12.
element.MouseLeftButtonDown +=
OnMouseLeftButtonDown;
 element.KeyDown +=13.
OnKeyDown;
 }14.
 else15.
 {16.

17.
element.MouseLeftButtonDown -=
OnMouseLeftButtonDown;
 element.KeyDown -=18.
OnKeyDown;
 }19.
 }20.
}21.

When a TreeViewItem raises its KeyDown event,
this logic executes:

private static void1.
OnKeyDown(object sender,
KeyEventArgs e)
{2.
 if (e.OriginalSource ==3.
sender)
 {4.
 if (e.Key == Key.Space)5.
 {6.
 // ignore alt+space7.
which invokes the system menu
 if8.
((Keyboard.Modifiers &
ModifierKeys.Alt) ==
ModifierKeys.Alt)
 return;9.
 10.

11.
UpdateIsChecked(sender as
DependencyObject);
 e.Handled = true;12.
 }13.
 else if (e.Key ==14.

Last
update:
2022/09/23
06:25

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663907124

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/31 19:07

Key.Enter &&
 (bool)(sender as15.
DependencyObject)

16.
.GetValue(KeyboardNavigation.Ac
ceptsReturnProperty))
 {17.

18.
UpdateIsChecked(sender as
DependencyObject);
 e.Handled = true;19.
 }20.
 }21.
}22.
 23.
private static void24.
UpdateIsChecked(DependencyObjec
t d)
{25.
 Nullable<bool> isChecked =26.
GetIsChecked(d);
 if (isChecked == true)27.
 {28.
 SetIsChecked(d,29.
 GetIsThreeState(d) ?30.
 (Nullable<bool>)null :31.

32.
(Nullable<bool>)false);
 }33.
 else34.
 {35.
 SetIsChecked(d,36.
isChecked.HasValue);
 }37.
}38.

The UpdateIsChecked method sets the attached
IsChecked property on an element, which is a
TreeViewItem in this demo. Setting an attached
property on a TreeViewItem has no effect by
itself. In order to have the application use that
property value, it must be bound to something.
In this application, it is bound to the IsChecked
property of a FooViewModel object. The following
Style is assigned to the TreeView’s
ItemContainerStyle property. It ties a
TreeViewItem to a FooViewModel object and
adds the virtual ToggleButton behavior that we
just examined.

2026/01/31 19:07 19/20 Tipps und Tricks

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

<Style1.
x:Key="TreeViewItemStyle"
TargetType="TreeViewItem">
 <Setter Property="IsExpanded"2.
Value="True" />
 <Setter Property="IsSelected"3.
Value="{Binding
IsInitiallySelected,
Mode=OneTime}" />
 <Setter4.
Property="KeyboardNavigation.Ac
ceptsReturn" Value="True" />
 <Setter5.
Property="dw:VirtualToggleButto
n.IsVirtualToggleButton"
Value="True" />
 <Setter6.
Property="dw:VirtualToggleButto
n.IsChecked" Value="{Binding
IsChecked}" />
</Style>7.

This piece ties the entire puzzle together. Note
that the attached
KeyboardNavigation.AcceptsReturn property is
set to true on each TreeViewItem so that the
VirtualToggleButton will toggle its check state in
response to the Enter key. The first Setter in the
Style, which sets the initial value of each item's
IsExpanded property to true, ensures that
Requirement 8 is met.

CheckBox Bug in Aero Theme

I must point out one strange, and disappointing,
issue. The Aero theme for WPF’s CheckBox
control has a problem in .NET 3.5. When it
moves from the ‘Indeterminate’ state to the
‘Checked’ state, the background of the box does
not update properly until you move the mouse
cursor over it. You can see this in the screenshot
below:

Last
update:
2022/09/23
06:25

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663907124

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/31 19:07

From:
https://jmz-elektronik.ch/dokuwiki/ - Bücher & Dokumente

Permanent link:
https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663907124

Last update: 2022/09/23 06:25

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Adotnetgrundlagen%3Atipps_tricks&media=start:visualstudio2017:programmieren:tipps_tricks:screenshot_aero.png
https://jmz-elektronik.ch/dokuwiki/
https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663907124

	Inhaltsverzeichnis
	Tipps und Tricks
	ContextSwitchDeadlock erkennen und umgehen
	Fehlermeldung Visual Studio 2019
	Erklärung
	Lösung

	In Visual Studio 2019 zusätzliche Debug Informationen auschalten
	Zusätzliche Debug Informationen

	Window und Screen Mouse Koordinaten ermitteln
	Demo Code

	WPF, DependencyProperty.Register() or .RegisterAttached
	How to Test Your Internal Classes in C# (NUnit)
	Benefits of the internal access modifier
	How to test internal methods and classes?
	.Net Core
	.Net Standard project
	Conclusion

	Working with Checkboxes in the WPF TreeView / Arbeiten mit Kontrollkästchen in der WPF TreeView
	Introduction
	Background
	The Devil is in the Details
	Functional Requirements
	Putting the Smarts in a ViewModel
	TreeView Configuration
	Turning a TreeViewItem into a ToggleButton
	CheckBox Bug in Aero Theme
	Einführung
	Hintergrund
	Der Teufel steckt im Detail
	Funktionale Anforderungen
	Die Intelligenz in ein ViewModel packen
	Einen TreeViewItem in einen ToggleButton verwandeln

