2026/01/31 19:09 1/2 Tipps und Tricks

Inhaltsverzeichnis
TIPPS UNA THICKS ...t e e e e e e e e e e e b b e e e e e s nb b e e e e e e s annnnreeas 1
ContextSwitchDeadlock erkennen und umgehenccccccoiiiiiiiiiiiiiiii s 1
Fehlermeldung Visual STUdio 2019eeuiiiiiiiiii e 1
EPKIQIUNG ottt e e e e e e e e e e e bbb e ettt e e e e e e e e e e e e e r e e e e e e eeas 2
(01U o Lo TP PP TP PPPPPTTTPPPPPRRTIN 2
In Visual Studio 2019 zusatzliche Debug Informationen auschalten 2
Zusatzliche Debug INfOrmationenuuuiiiiiiiiii e 2
Window und Screen Mouse Koordinaten ermittelncccccocccccici, 2
WPF, DependencyProperty.Register() or .RegisterAttachedccceeeeiiieeennn. 3
How to Test Your Internal Classes in C# (NUNIL)coooiiiiiiiiiiie e 4
Working with Checkboxes in the WPF TreeView / Arbeiten mit Kontrollkastchen in der
WP TrEEVIBW ...ooiiiiiiiiiiiiiii ittt ettt e ettt e e e e e e e e e e s s s e e bbb bbb et e e et e e e e e eeeeennennnnns 8

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last
update:
2022/09/22
21:13

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663874016

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/31 19:09

2026/01/31 19:09 1/13 Tipps und Tricks

Tipps und Tricks

Hier finden Sie verschiedene Tipps und Tricks rund um C#, .NET und Visual Studio (Verschieden
Versionen).

ContextSwitchDeadlock erkennen und umgehen

Fehlermeldung Visual Studio 2019

Message

ContextSwitchDeadlock wurde erkannt. Message: Die CLR konnte 60 Sekunden lang keinen Ubergang
vom COM-Kontext 0x2¢c32f90 zum COM-Kontext 0x2c331e0 durchflhren. Der Thread, der Besitzer
des Zielkontexts/-apartments ist, wartet entweder, ohne Meldungen zu verschieben, oder verarbeitet
eine auBerst lang dauernde Operation, ohne Windows-Meldungen zu verschieben. Eine solche
Situation beeintrachtigt in der Regel die Leistung und kann sogar dazu fihren, dass die Anwendung
nicht mehr reagiert oder die Speicherauslastung immer weiter zunimmt. Zur Vermeidung dieses
Problems sollten alle STA-Threads (Singlethread-Apartment) primitive Typen verwenden, die beim
Warten Meldungen verschieben (z.B. CoWaitForMultipleHandles), und bei lange dauernden
Operationen generell Meldungen verschieben.

Diese tritt beim abfragen von Fenstertitel der Anwendungen auf, der Code dazu:

1. public string Text
2
3 get
4.
5. try
6
7 StringBuilder title = new StringBuilder
8. UnManagedMethods.GetWindowText (this.hWnd, title, title.Capacity
9. title.ToString
10.
11. catch "
12.
13.
14.
15. private class UnManagedMethods
16.
17. DllImport("user32", CharSet = CharSet.Auto
18. public extern static int GetWindowText (IntPtr hWnd, StringBuilder
1pString int cch
19.
20.

Der code wird in Visual Studio 2019 im Debug Modus ausgefuhrt. Wie kann man dieses ,,hangen
bleiben“ erkennen und abbrechen, gibt es da GUberhaupt eine Mdglichkeit?

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last
update:
2022/09/22
21:13

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663874016

Erklarung

Wenn man im Debug Modus anhalt, dann werden auch keine Windows-Nachrichten mehr verarbeitet.
Das heilst, die COM-Komponente verarbeitet eine Windows-Nachricht, die verursacht, dass in deinen
Code gesprungen wird. Sollte dann binnen 60 Sekunden keine Ruckantwort kommen, dann erhalst Du
diese Fehlermeldung, weil die COM Komponente keine weiteren Nachrichten verarbeiten kann
derweil.

Losung

Einfach die Exception in den Visual Studio Einstellungen abschalten.

In Visual Studio 2019 zusatzliche Debug Informationen
auschalten

Zusatzliche Debug Informationen

Rename Layout E Die Standardeinstellungen in Visual
Studio 2019 zeigt oben auf jedem WPF
- Fenster zusatziche Tool zum debugen des
Enter New NE" Programm an. Nachteil ist, dass damit
New Layout auch darunterliegende Komponenten
verdeckt werden. Mit folgenden Schritten
lasst sich das auch ausschalten:

CK | Cancel

English Version : Tools - Options - Debugging - General -» Enable Ul Debugging Tools for XAML
Deutsche Version : Extras - Optionen -» Debugging = Allgemein = Ul-Debugtool fur XAML aktivieren

Setzen oder entfernen Sie einfach das Hackchen.

Window und Screen Mouse Koordinaten ermitteln

Wie wir alle wissen gibt es Methoden die uns die Mausposition relativ zu anderen controls zurlickgibt.
Doch manchmal mdchte wir auch die Mausposition ausserhalb des Fensters wissen. Diese
Kurzanleitung soll einen kleinen Tipp sein.

1. #Mit folgenden zwei Methoden lasst sich die Mausposition relativ zu
einem control ermitteln:

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/31 19:09

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Adotnetgrundlagen%3Atipps_tricks&media=start:visualstudio2017:programmieren:tipps_tricks:wpf_debug_windows_tools.png

2026/01/31 19:09 3/13 Tipps und Tricks

2. Mouse.GetPosition(IInputElement relativeTo
3. MouseEventArgs.GetPosition(IInputElement relativeTo).

Demo Code

Bei diesem Beispiel wird die Mausposition auf der obersten Titelleiste (WindowTitle) angezeigt. Die
Koordination sind innerhalb des Fensters auf die Zeichnungsflache bezogen und ausserhalb des
Fensters werden die Screen Koordinaten angezeigt.

1. namespace CorelLoader.Views

2

3

4.

5. /// <summary>

6 /// Interaction logic for Main.xaml

7 /// </summary>

8. public partial class Main : Window

9.

10. public Main(object datacontex

11.

12. InitializeComponent

13. DataContext = datacontex

14.

15. CompositionTarget.Rendering OnRendering

16.

17.

18. private void OnRendering(object sender, EventArgs e

19.

20. var x = Mouse.GetPosition(this).X

21. var y = Mouse.GetPosition(this).Y

22. this.Title = Math.Round(y .ToString " !
Math.Round (x .ToString

23.

24.

25.

Der Event OnRendering() wird vor dem Zeichnen des WPF Fenster ausgefuhrt. Dieses Beispiel ist
eine verkurzte Abschrift und wurde zur Sicherung kopiert.

WPF, DependencyProperty.Register() or .RegisterAttached

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

https://getandplay.github.io/2019/05/13/How-does-WPF-application-get-mouse-position-when-mouse-stay-outside-window/
https://getandplay.github.io/2019/05/13/How-does-WPF-application-get-mouse-position-when-mouse-stay-outside-window/

Last
update:
2022/09/22
21:13

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663874016

English

Deutsch

| assume you meant
DependencyProperty.Register and
DependencyProperty.RegisterAttached.
DependencyProperty.Register is used to register
normal DependencyProperty. You can see those
as just regular properties, with the added twist
that they can take part in WPF's DataBinding,
animations etc. In fact, they are exposed as
normal property (with the get and set accessors)
on top of the untyped
DependencyObject.SetValue / GetValue. You
declare those as part of your type. Attached
properties on the other hand are different. They
are meant as an extensibility system. If you have
ever used Extenders in Windows Forms, they are
kind of similar. You declare them as part of a
type, to be used on another type. They are used
a lot for layout-related information. For example,
Canvas needs Left/Top coordinates, Grid needs a
Row and a Column, DockPanel needs a Dock
information etc. It would be a mess if all of this
had to be declared on every Control that can be
layouted. So they are declared on the
corresponding panel, but used on any Control.
You can use the same thing to attach any
information to a DependencyObject if you need
to. It can come in handy to just declare a piece of
information that you can set in xaml just to be
used later in a style for an existing class for
example. So those two kind of
DependencyProperty serve a very different
purpose. Regular properties (registered through
Register()) are used just like normal properties
as part of the interface of your type. Attached
properties (registered through
RegisterAttached()) are used as an extensibility
point on existing classes. Hope that clarifies it a
bit.

Ich nehme an, Sie meinten
DependencyProperty.Register und
DependencyProperty.RegisterAttached.
DependencyProperty.Register wird verwendet, um
normale DependencyProperty zu registrieren. Sie
kdnnen diese als ganz normale Eigenschaften
betrachten, mit dem zusatzlichen Vorteil, dass sie
an WPFs DataBinding, Animationen usw.
teilnehmen kdénnen. In der Tat sind sie als normale
Eigenschaft (mit den Get- und Set-Accessoren) auf
dem untypisierten DependencyObject.SetValue /
GetValue ausgesetzt. Sie deklarieren diese als Teil
Ihres Typs. Angehangte Eigenschaften hingegen
sind anders. Sie sind als ein System zur
Erweiterung gedacht. Wenn Sie schon einmal
Extender in Windows Forms verwendet haben, sind
sie sehr ahnlich. Sie werden als Teil eines Typs
deklariert, um in einem anderen Typ verwendet zu
werden. Sie werden haufig fur layoutbezogene
Informationen verwendet. Zum Beispiel braucht
Canvas Links/Oben-Koordinaten, Grid braucht eine
Row und eine Column, DockPanel braucht eine
Dock-Information usw. Es ware unubersichtlich,
wenn all dies fur jedes Steuerelement, das fur das
Layout verwendet werden kann, deklariert werden
musste. Also werden sie auf dem entsprechenden
Panel deklariert, aber auf jedem Control
verwendet. Sie kdnnen dasselbe tun, um beliebige
Informationen an ein DependencyObject
anzuhangen, wenn Sie es brauchen. Es kann sehr
nutzlich sein, eine Information zu deklarieren, die
man in xaml einstellen kann, um sie spater in
einem Stil flr eine bestehende Klasse zu
verwenden, zum Beispiel. Diese beiden Arten von
DependencyProperty dienen also einem sehr
unterschiedlichen Zweck. Regulare Eigenschaften
(registriert durch Register()) werden wie normale
Eigenschaften als Teil der Schnittstelle lhres Typs
verwendet. Angehangte Eigenschaften (registriert
durch RegisterAttached()) werden als
Erweiterungspunkt fur bestehende Klassen
verwendet. Ich hoffe, das macht es ein wenig
klarer.

--Denis Troller

How to Test Your Internal Classes in C# (NUnit)

How to test internal classes? (microsoft,) 2019-12-

10 by Johnny Graber

https://jmz-elektronik.ch/dokuwiki/

Printed on 2026/01/31 19:09

https://stackoverflow.com/questions/910579/dependencyproperty-register-or-registerattached#914030
https://improveandrepeat.com/2019/12/how-to-test-your-internal-classes-in-c/

2026/01/31 19:09 5/13 Tipps und Tricks

One of the most important concepts of object-oriented design is encapsulation. You try to hide all the
internal things of a class from the other developers and only offer them a subset of functionality to
use. You can achieve this by setting an appropriate access modifier for your methods and classes:

e public: The type or member can be accessed by any other code in the same assembly or
another assembly that references it.

e private: The type or member can be accessed only by code in the same class or struct.

e protected: The type or member can be accessed only by code in the same class, or in a class
that is derived from that class.

e internal: The type or member can be accessed by any code in the same assembly, but not
from another assembly.

e protected internal: The type or member can be accessed by any code in the assembly in
which it is declared, or from within a derived class in another assembly. (as in protected OR
internal)

 private protected: The type or member can be accessed only within its declaring assembly,
by code in the same class or in a type that is derived from that class. (as in private OR
protected)

Public and private are the two most used access modifiers. You find them in all the examples, they
are straight forward to use and do exactly what you expect. They are a great help to manage access
to the methods in your classes and the classes themselves.

If we look at bigger parts of our application, we use code from different assemblies or NuGet
packages. Those distribution formats have their own boundaries that you can use to enforce
encapsulation. Public and private access modifiers are again a great help. However, over the years |
appreciated the internal access modifier more and more.

Benefits of the internal access modifier

There is always that code that you need but has no place to go. It is not a class on its own and it does
not fit to any other. At some point you stop searching for the right place and put it into a class called
MyHelper. That code can’t be private, then many of your classes need them. And you do not want to
make it public, then this code should not be called from outside your assembly.

The internal access modifier is exactly made for such use cases. By declaring the class or just a few
methods as internal, you can access them from everywhere in your assembly but not from outside. All
you need to do is to write internal instead of public or private:

1. public class MyHelper

2

3 internal string InternalMethod

4.

5. "should only be visible to the class itself & tests"
6

7

8 public string PublicMethod

9.

10. "Everyone can call this method"
11.

12.

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last

3823585/22 start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663874016

21:13

13. private string PrivateMethod

14.

15. "you should not be able to call this directly"
16.

17.

The users of your assembly or NuGet package do not know that this helper method exist. That allows
you to freely move that code around to a better location or refactor it until you find a more fitting
abstraction. All that without the need to change code outside your assembly - then no one else can
call it directly.

var helper = new MyHelper();
helper.|

PublicMethod string
Equals

GetHashCode nt
GetType

O G GO

How to test internal methods and classes?

That helper code you marked with internal is most often important. Therefore, you should write
extensive tests for those classes and methods. But how can you do that when you can’t access that
code from outside your assembly?

The .NET Framework offers the InternalsVisibleTo attribute to specify which other assemblies can
access the internal methods and classes inside this assembly. All you need to do is to add this
attribute to the AssemblyInfo.cs file and pass the name of your test assembly to the constructor:

1. [assembly: InternalsVisibleTo("Logic.Tests"

When you put this attribute to the AssemblylInfo.cs file, then all internal methods can be accessed by
code inside the Logic.Tests assembly. To test your internal code this behaviour is exactly what you
want. If this is too much, you can add this attribute in a specific class and only allow access to the
internal methods of this class.

As soon as you recompile your assembly, the code in your test assembly can access your internal
methods:

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/31 19:09

2026/01/31 19:09 7/13 Tipps und Tricks

[Test]
public void InternalMethodCanBeUsed()

{

var testee = new MyHelper();

testee.
5+ InternalMethod string
@ PublicMethod string
¥ Equals bool
¥ GetHashCode int
¥ GetType Type

.Net Core

In .Net Core you do not have an AssemblylInfo.cs file. You can add one with the Add New Item dialog
and set the attribute there in the same way you would do that in the .Net Full Framework and get
exactly the same benefits.

Add New Item - Logic

T
T
iw

4 |nstalled Sort by: | Default v

i =C#
4 Visual C# Items Dl Assembly Information File Visual C# ltems
WPF

Code
Data

General

.Net Standard project

As pointed out by Miguel Alho in the comments, you can add an IltemGroup in your *.csproj file to get
the same effect. For that, paste this code as the last block before the closing project tag:

1. <ItemGroup>

2. <AssemblyAttribute
Include="System.Runtime.CompilerServices.InternalsVisibleTo">

3. < Parameterl-Logic.Tests</ Parameterl-

4. </AssemblyAttribute-

5. </ItemGroup>

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last
update:
2022/09/22
21:13

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663874016

Conclusion

Use the internal access modifier the next time you have helper code that you need but no one else
should call. This little keyword will help you to hide your mess inside your assembly and still allows
you to write tests. With internal you get the best of both worlds without breaking encapsulation.

2019-12-10 by Johnny Graber

Working with Checkboxes in the WPF
TreeView / Arbeiten mit Kontrollkastchen in
der WPF TreeView

Introduction Einfuhrung

This article reviews a WPF TreeView whose itemsDieser Artikel beschreibt eine WPF TreeView,
contain checkboxes. Each item is bound to a deren Elemente Kontrollkastchen enthalten.
ViewModel object. When a ViewModel object’s Jedes Element ist an ein ViewModel Objekt
check state changes, it applies simple rules to gebunden. Wenn sich der Prufstatus eines

the check state of its parent and child items. ViewModel-Objekts andert, wendet es einfache
This article also shows how to use the attached Regeln auf den Prifstatus seiner

behavior concept to turn a TreeViewltem into a Ubergeordneten und untergeordneten Elemente

virtual ToggleButton, which helps make the an. Dieser Artikel zeigt auch, wie man das
TreeView's keyboard interaction simple and angehangte Verhaltenskonzept verwenden kann,
intuitive. um ein TreeViewltem in einen virtuellen

ToggleButton zu verwandeln, der hilft, die
This article assumes that the reader is already Tastaturinteraktion des TreeViews einfach und

familiar with data binding and templates, intuitiv zu gestalten.

binding a TreeView to a ViewModel, and

attached properties. Dieser Artikel geht davon aus, dass der Leser
bereits mit Datenbindung und Templates, der

Background Bindung eines TreeViews an ein ViewModel und

_ . angehangten Eigenschaften vertraut ist.
It is very common to have a TreeView whose

items are checkboxes, such as when presenting Hintergrund

the user with a hierarchical set of options to

select. In some Ul platforms, such as WinForms, Es ist sehr tblich, einen TreeView zu haben,
the standard TreeView control offers built-in dessen Elemente Kontrollkastchen sind, z.B.
support for displaying checkboxes in its items. wenn dem Benutzer ein hierarchischer Satz von
Since element composition and rich data binding Optionen zur Auswahl prasentiert wird. In

are two core aspects of WPF, the WPF TreeView einigen Ul-Plattformen, wie z.B. WinForms, bietet
does not offer intrinsic support for displaying das Standard-TreeView-Steuerelement
checkboxes. It is very easy to declare a integrierte UnterstUtzung flr die Anzeige von
CheckBox control in a TreeView’s ItemTemplate Kontrollkastchen in seinen Elementen. Da

and suddenly every item in the tree contains a Elementkomposition und reichhaltige

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/31 19:09

https://improveandrepeat.com/2019/12/how-to-test-your-internal-classes-in-c/

2026/01/31 19:09

9/13 Tipps und Tricks

CheckBox. Add a simple {Binding} expression to Datenbindung zwei Kernaspekte von WPF sind,
the IsChecked property, and suddenly the check bietet das WPF TreeView keine integrierte

state of those boxes is bound to some property
on the underlying data objects. It would be
superfluous, at best, for the WPF TreeView to
have an API specific to displaying checkboxes in
its items.

The Devil is in the Details

This sounds too good to be true, and it is.
Making the TreeView “feel right,” from a
keyboard navigation perspective, is not quite as
simple. The fundamental problem is that as you
navigate the tree via arrow keys, a

Unterstltzung fur die Anzeige von
Kontrollkastchen. Es ist sehr einfach, ein
CheckBox-Steuerelement im ItemTemplate eines
TreeViews zu deklarieren und plotzlich enthalt
jedes Element im Baum eine CheckBox. Fugen
Sie der IsChecked-Eigenschaft einen einfachen
{Binding}-Ausdruck hinzu, und plétzlich ist der
Prifstatus dieser Boxen an eine Eigenschaft der
zugrunde liegenden Datenobjekte gebunden. Es
ware bestenfalls Gberflissig, dass die WPF
TreeView eine API speziell fir die Anzeige von
Checkboxen in ihren Elementen hat.

TreeViewltem will first take input focus, and thenper Teufel steckt im Detail

the CheckBox it contains will take focus upon the

next keystroke. Both the TreeViewltem and
CheckBox controls are focusable. The result is
that you must press an arrow key twice to
navigate from item to item in the tree. That is
definitely not an acceptable user experience,

Das klingt zu schén, um wahr zu sein, und das
ist es auch. Den TreeView aus der Perspektive
der Tastaturnavigation ,richtig” zu machen, ist
nicht ganz so einfach. Das grundsatzliche
Problem ist, dass ein TreeViewltem beim

and there is no simple property that you can set Navigieren durch den Baum mit den Pfeiltasten
to make it work properly. | have already brought zuerst den Eingabefokus erhalt und dann die

this issue to the attention of a certain key
member on the WPF team at Microsoft, so they
might address it in a future version of the
platform.

Functional Requirements

Before we start to examine how this demo
program works, first we will review what it does.
Here is a screenshot of the demo application in
action:

CheckBox, die es enthalt, beim nachsten
Tastendruck den Fokus erhalt. Sowohl das
TreeViewltem- als auch das CheckBox-
Steuerelement sind fokussierbar. Das Ergebnis
ist, dass Sie eine Pfeiltaste zweimal dricken
massen, um im Baum von einem Element zum
anderen zu navigieren. Das ist definitiv keine
akzeptable Benutzererfahrung, und es gibt keine
einfache Eigenschaft, die Sie einstellen kénnen,
damit es richtig funktioniert. Ich habe bereits ein
bestimmtes Mitglied des WPF-Teams bei
Microsoft auf dieses Problem aufmerksam
gemacht, damit es in einer zukUnftigen Version
der Plattform behoben werden kann.

Funktionale Anforderungen

Bevor wir untersuchen, wie dieses
Demoprogramm funktioniert, sollten wir uns
zunachst ansehen, was es tut. Hier ist ein
Screenshot der Demoanwendung in Aktion:

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last
update:
2022/09/22
21:13

-~

| TreeView with CheckBoxes = [@ |[&53]
4 [Elweapons
4 [“IBlades
[“]Dagger
[“IMachete
[¥]sword
4 [®]Vehicles
[¥] Apache Helicopter
[]Ssubmarine
[“ITank
« [1Guns
[Jak 47
[]Beretta

Cuzi

| TreeView with CheckBoxes

4 [E]weapons

4 [v|Blades
[¥IDagger
[¥IMachete
[¥] sword

4 [m]Vehicles
[¥] Apache Helicopter
[]submarine
[MTank

4 []Guns
Clak 47
[Beretta
Cuzi

== Eon)

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663874016

Now let's see what the functional requirements
are:

1. Requirement : Each item in the tree must
display a checkbox that displays the text
and check state of an underlying data
object.

Requirement : Upon an item being
checked or unchecked, all of its child items
should be checked or unchecked,
respectively.

Requirement : If an item’s descendants do
not all have the same check state, that
item’s check state must be
‘indeterminate.’

Requirement : Navigating from item to
item should require only one press of an
arrow key.

Requirement : Pressing the Spacebar or
Enter keys should toggle the check state
of the selected item.

Requirement : Clicking on an item’s
checkbox should toggle its check state,
but not select the item.

Requirement : Clicking on an item’s
display text should select the item, but not
toggle its check state.

Requirement : All items in the tree should
be in the expanded state by default.

| suggest you copy those requirements and
paste them into your favorite text editor, such as
Notepad, because we will reference them

Schauen wir uns nun die funktionalen
Anforderungen an:

1. Anforderung : Jedes Element in der
Baumstruktur muss ein Kontrollkastchen
enthalten, das den Text und den
Kontrollstatus eines zugrunde liegenden
Datenobjekts anzeigt.

. Anforderung : Wenn ein Element
angekreuzt oder nicht angekreuzt wird,
sollten alle seine untergeordneten
Elemente angekreuzt bzw. nicht
angekreuzt werden.

. Anforderung : Wenn die Nachkommen

eines Eintrags nicht alle den gleichen

Prifstatus haben, muss der Prufstatus

dieses Eintrags ,unbestimmt” sein.

Anforderung : Das Navigieren von Element

zu Element sollte nur einen einzigen Druck

auf eine Pfeiltaste erfordern.

. Anforderung : Das Drucken der Leertaste

oder der Eingabetaste sollte den

Prifstatus des ausgewahlten Eintrags

umschalten.

Anforderung : Ein Klick auf das

Kontrollkastchen eines Eintrags soll den

Kontrollstatus umschalten, aber den

Eintrag nicht auswahlen.

. Anforderung : Das Anklicken des

Anzeigetextes eines Eintrags soll den

Eintrag auswahlen, aber nicht seinen

Markierungsstatus umschalten.

Anforderung : Alle Elemente in der

https://jmz-elektronik.ch/dokuwiki/

Printed on 2026/01/31

19:09

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Adotnetgrundlagen%3Atipps_tricks&media=start:visualstudio2017:programmieren:tipps_tricks:screenshot.png
https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Adotnetgrundlagen%3Atipps_tricks&media=start:visualstudio2017:programmieren:tipps_tricks:screenshot.png

2026/01/31 19:09 11/13 Tipps und Tricks

throughout the rest of the article by number. Baumstruktur sollten sich standardmaRig

im erweiterten Zustand befinden.
Putting the Smarts in a ViewModel

Ich schlage vor, Sie kopieren diese
As explained in my ‘Simplifying the WPF Anforderungen und fligen sie in lhren
TreeView by Using the ViewModel Pattern’ bevorzugten Texteditor ein, z. B. in Notepad, da
article, the TreeView was practically designed to wir sie im weiteren Verlauf des Artikels
be used in Conjunction with a ViewModel. This nummerisch referenzieren werden.
article takes that idea further, and shows how
we can use a ViewModel to encapsulate
application-specific logic related to the check
state of items in the tree. In this article, we will Wie in meinem Artikel 'Simplifying the WPF

examine my FooViewModel class, which the TreeView by Using the ViewModel Pattern’
following interface describes: (Vereinfachung der WPF-TreeView durch

Verwendung des ViewModel-Musters) erlautert,
wurde die TreeView praktisch dafur entwickelt,
in Verbindung mit einem ViewModel verwendet
zu werden. Dieser Artikel fihrt diese Idee weiter

Die Intelligenz in ein ViewModel packen

1. interface IFooViewModel
INotifyPropertyChanged

2. und zeigt, wie wir ein ViewModel verwenden

3. List<FooViewModel> Children kgnnen, um anwendungsspezifische Logik in
get Bezug auf den Prifstatus von Elementen im

4. bool’ IsChecked { get; set; Baum zu kapseln. In diesem Artikel werden wir

meine FooViewModel-Klasse untersuchen, die
5. bool IsInitiallySelected durch die folgende Schnittstelle beschrieben
get wird:
string Name { get

(@)]

1. /// Test

The most interesting aspect of this ViewModel
class is the logic behind the IsChecked property.
This logic satisfies Requirements 2 and 3, seen
previously. The FooViewModel's IsChecked logic
is below:

1. ///Ruft den Zustand des
zugehorigen UI-Toggles (z.B.
CheckBox) ab bzw. setzt ihn.

2. ///Der Rickgabewert wird auf
der Grundlage des Priifstatus

1. /// <summary>

2. /// Gets/sets the state of the
associated UI toggle (ex.
CheckBox) .

3. /// The return value is
calculated based on the check
state of all

4. /// child FooViewModels.
Setting this property to true
or false

5. /// will set all children to
the same check state, and
setting it

6. /// to any value will cause the
parent to verify its check
State.

aller untergeordneten

. ///FooViewModelle berechnet.

Wenn diese Eigenschaft auf true
oder false gesetzt wird,

. ///erhalten alle

untergeordneten Modelle den
gleichen Prifstatus,

. ///und wenn sie auf einen

beliebigen Wert gesetzt wird,
uberprift das lUbergeordnete
Modell seinen Priifstatus.

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last
update:
2022/09/22
21:13

start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663874016

=
P © O 00

=

12.
13.
14,

15.
16.
17.
18.
19.
20.
21.

22.

23.
24,

25.

26.
27.

28.
29.
30.
31.
32.
33.

34.
35.

36.
37.
38.
39.
40.

41.
42,

. /// </summary>
. public bool? IsChecked

get _isChecked

set
this.SetIsChecked(value, true
true

void SetIsChecked(bool” value
bool updateChildren, bool
updateParent

value _isChecked

_isChecked = value

updateChildren
_isChecked.HasValue
this.Children.ForEach(c
c.SetIsChecked(isChecked
true, false

updateParent _parent
null

_parent.VerifyCheckState
this.OnPropertyChanged("IsCheck
edll
void VerifyCheckState
bool” state = null
int i i
this.Children.Count i

bool” current
this.Children[i].IsChecked

i
state current
state
current
state = null

https://jmz-elektronik.ch/dokuwiki/

Printed on 2026/01/31 19:09

2026/01/31 19:09 13/13 Tipps und Tricks

43, break

44

45,

46. this.SetIsChecked(state
false, true

47.

From:
https://jmz-elektronik.ch/dokuwiki/ - Bicher & Dokumente

Permanent link:
https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663874016 ;

Last update: 2022/09/22 21:13

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

https://jmz-elektronik.ch/dokuwiki/
https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:dotnetgrundlagen:tipps_tricks&rev=1663874016

	Inhaltsverzeichnis
	Tipps und Tricks
	ContextSwitchDeadlock erkennen und umgehen
	Fehlermeldung Visual Studio 2019
	Erklärung
	Lösung

	In Visual Studio 2019 zusätzliche Debug Informationen auschalten
	Zusätzliche Debug Informationen

	Window und Screen Mouse Koordinaten ermitteln
	Demo Code

	WPF, DependencyProperty.Register() or .RegisterAttached
	How to Test Your Internal Classes in C# (NUnit)
	Benefits of the internal access modifier
	How to test internal methods and classes?
	.Net Core
	.Net Standard project
	Conclusion

	Working with Checkboxes in the WPF TreeView / Arbeiten mit Kontrollkästchen in der WPF TreeView
	Introduction
	Background
	The Devil is in the Details
	Functional Requirements
	Putting the Smarts in a ViewModel
	Einführung
	Hintergrund
	Der Teufel steckt im Detail
	Funktionale Anforderungen
	Die Intelligenz in ein ViewModel packen

