
2026/01/18 02:39 1/4 Übersicht und Versionen

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Inhaltsverzeichnis
Übersicht und Versionen 1 ...

Erklärungen zu den Symbolen 1 ..
Einführung 1 ...

Kurzübersicht 1 ..
Ihr Nutzen 2 ...
Zielpublikum 2 ..
Voraussetzung 2 ...

C# und .NET 2 ...
Worum geht es? 2 ..
Was lernen Sie in diesem Kapitel? 2 ...
Was ist .NET? 2 ...

Ein neue Welt für .NET 5 ..
Ein Beispiel eines CIL Codes 6 ..
Die APIs des .NET Standard 2.0 7 ...

Erste Schritte im C# 7 ...
Worum geht es? 7 ..
Was lernen Sie in diesem Kapitel? 7 ...
Hello World 7 ...
Zusammenfassung 10 ..
Kontrollfragen 10 ...

Klassen und Objekte 10 ..
Worum geht es? 10 ..
Was lernen Sie in diesem Kapitel? 11 ...
Einführung 11 ..

Begriffe 11 ...
Deklaration von Klassen 11 ..
Erzeugen von Instanzen einer Klasse 11 ..

Felder einer Klasse 13 ...
Modifikatoren 14 ..
Variable und Felder 15 ...
this 15 ..
Deklaration von Konstanten 17 ..

Methoden einer Klasse 17 ...
Parameterübergabe 18 ..
Optionale Parameter 20 ...
Überladen von Methoden 21 ..

Statische Methoden / Variablen 22 ...
Zugriff auf statische Methoden und Variablen 23 ..
Statische Klasse 24 ..

Initialisierung 24 ..
Konstruktoren 24 ...
Destruktoren / Finalizer 26 ...

Namensräume 27 ..
Verwenden von Namensräumen 27 ...
Der globale Namensraum 28 ...

Zusammenfassung 28 ..
Kontrollfragen 28 ...
Übung Klasse und Objekte 28 ..

Last
update:
2018/10/03
13:58

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567909

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:39

Grundlagen Datentypen 29 ..
Worum geht es? 29 ..
Was lernen Sie in diesem Kapitel 29 ...
Datentypen 29 ..

Speicherverwaltung 29 ..
Die Null-Referenz 30 ..
Nullbare Typen 30 ..
Garbage Collection 30 ..
Standard-Datentypen von C# 31 ...
Methoden von Datentypen 31 ..
Type und typeof() 32 ...

Typkonvertierung 33 ..
Das as-Operator 34 ..
Der is-Operator 35 ...
Umwandlungsmethoden 37 ...

Boxing und Unboxing 37 ...
Strings 39 ..

Stringzuweisungen 39 ..
Zugriff auf String 40 ...

Formatierung von Daten 41 ..
Standardformate 41 ...
Selbstdefinierte Formate 41 ...
Ausrichtung 41 ...

Zusammenfassung 41 ..
Übungen Datenverwaltung 41 ...

Ablaufsteuerung 42 ...
Worum geht es? 42 ..
Was lernen Sie über dieses Kapitel? 42 ...
Absolute Sprünge 42 ...
Bedingungen und Verzweigungen 42 ...

Vergleichs- und logische Operatoren 42 ..
Die bedingte Zuwweisung 42 ...
Die for-Schleife 42 ..
Die while-Schleife 42 ..
Die do-while-Schleife 42 ...

Zusammenfassung 42 ..
Kontrollfragen 42 ...
Übungen Programmablauf 42 ..

Operatoren 42 ..
Worum geht es? 42 ..
Was lernen Sie in desem Kapitel 43 ..
Mathematische Operatoren 43 ...

Grundrechnenarten 43 ...
Zusammengesetzte Rechenoperatoren 43 ..
Die Klasse Math 43 ...

Zusammenfassung 43 ..
Kontrollfragen 43 ...

Erweiterte Datentypen 43 ..
Worum geht es? 43 ..

2026/01/18 02:39 3/4 Übersicht und Versionen

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Was lernen Sie in diesem Kapitel? 43 ...
Array 43 ...

Eindimensionale Arrays 43 ...
Mehrdimensionale Arrays 43 ..
Ungleichförmige Arrays 43 ...
Arrays initialsieren 43 ..
Die foreach-Schleife 43 ..

Struct 44 ..
Aufzählungen 44 ...

Standard-Aufzählungen 44 ...
Flag Enums 44 ...

Zusammenfassung 44 ..
Kontrollfragen 44 ...
Übungen Array 44 ..

Vererbung und Interfaces 44 ...
Worum geht es? 44 ..
Was lernen Sie in diesem Kapitel 44 ...
Vererbung von Klassen 44 ..

Zugriff auf Elemente der Basisklasse 44 ..
Überschreiben von Methonden 44 ...
Aufruf des Konstruktors der Basisklasse 44 ...
Abstrakte Klassen 44 ...
Versiegelte Klassen 44 ...
Verbergen von Methoden 45 ..

Interface 45 ...
Explizite Interfaces 45 ...
Zusammenfassung 45 ..
Kontrollfragen 45 ...
Übungen 45 ...

Eigenschaften und Indexer 45 ...
Worum geht es? 45 ..
Was lernen Sie in diesem Kapitel? 45 ...
Eigenschaften (Properties) 45 ...
Erweiterungen der Properties 45 ..
Indexer 45 ..
Zusammenfassung 45 ..
Kontrollfragen 45 ...
Übungen 45 ...

Strukturierte Fehlerbehandlung 46 ..
Worum geht es? 46 ..
Was lernen Sie in diesem Kapitel? 46 ...
Was sind Exceptions? 46 ...
Exception abfangen 46 ..
Exception auslösen 46 ...
Anwendungstipps 46 ...
Zusammenfassen 46 ..
Kontrollfragen 46 ...

Anhang 46 ...
Erweiterung C# 46 ..

Initialisierer für Auto-Properties, read-only Auto-Properties 46 ..

Last
update:
2018/10/03
13:58

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567909

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:39

Verwendung statischer Klassen 46 ..
Exception Filter 46 ...
Null-conditional-Operator 46 ..
Expression bodied Member 46 ...
Initialisierung von Collections 47 ...
String Interpolation 47 ...
nameof Operator 47 ...

Literatur 47 ..
Fussnoten 47 ..

2026/01/18 02:39 1/48 Übersicht und Versionen

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Übersicht und Versionen

Visual Studio 2017
.NET 4.62
C# 7.0

Erklärungen zu den Symbolen
Lernziele

An dieser Stelle werden Ihnen die Lernziele des Kapitels erklärt. Sie erfahren, was Sie
nach dem Bearbeiten dieses Kapitels Neues anwenden können und was Sie dazulernen.

Hinweis

Wichtiger Hinweise und Warnungen finden Sie neben diesem Symbol.

Tipps & Tricks

Nebst der allgemeinen Bedienung eines Programms gibt es immer wieder praktische
Tipps und Tricks, die mit diesem Symbol für Sie gekennzeichnet sind.

Übungen

Neben diesem Symbol finden Sie die konkreten Übungen zum Lernstoff.

Lernzielkontrolle
Zum Schluss jedes Themas gilt es, das Vermittelte miteinander zu überprüfen - dazu
dienen die Lernzielkontrollen. Auf diese Weise können Sie das eben Gelernte zu Ihrem
persönlichen Erfolg vervollständigen.

Einführung

Kurzübersicht

Zusammen mit dem .NET Framework hat Microsoft die Programmiersprache C# (C-Sharp) entwickelt.
Die Sprache wurde stark an C++ angelehnt, die Sprache Visual Basic und Object Pascal (Delphi)
nahmen ebenfalls Einfluss. Da auch die Sprache Java von C++ abstammt, sind viele Ideen und
Konzepte gemeinsam. Nüchtern betrachtet, ist C# eine Weiterentwicklung von Java. Viele C#-
Konzepte sind inzwischen auch zu Java zurückgeflossen.

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:lernziele.png
https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:hinweis.png
https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:tipps_tricks.png
https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:uebungen.png
https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:lernzielkontrolle.png

Last
update:
2018/10/03
13:58

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567909

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:39

Ihr Nutzen

Lernen Sie elementaren Bestandteile der Programmiersprache C# kennen, können eigene Programme
damit entwerfen, erstellen und warten. Nach diesem Kurs haben Sie alle erforderlichen Grundlagen,
um sich in fortgeschrittene Themen von .NET einzuarbeiten.

Zielpublikum

Softwareentwickler, die von einer Sprache wie C++, Delphi, Smaltalk, Java oder einer anderen
objektorientierten Sprache herkommen, sich für die Programmierung der .NET-Plattform optimale
Voraussetzungen erarbeiten möchten.

Voraussetzung

Guten Kenntnisse der Programmiersprachen C++, Delphi, Smaltalk oder Java oder sehr gute
Kenntnisse in C oder Visual Basic.

C# und .NET

Worum geht es?

.NET ist die aktuelle Entwicklungsplattform für Windows- bzw. Internet-Applikationen von Microsoft.

Was lernen Sie in diesem Kapitel?

Sie erhalten in diesenm Kapitel einen groben Überblick über die Bedeutung von .NET. Sie kennen die
Hauptelemente, die .NET ausmachen, und kennen die funktionellen Bestandteile der CLR1) (Common
Language Runtime).

Was ist .NET?

2026/01/18 02:39 3/48 Übersicht und Versionen

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

 .NET ist das dritte, komplett neue
Entwicklungsmodel in der Microsoft-
Geschichte.

1980 DOS2)

1985 Windows 1.03)

1990 Windows 3.04)

1995 Windows 955)

2002 .NET 1.0
2003 .NET 1.1
2005 .NET 2.0
2006 .NET 3.0
2007 .NET 3.5
2010 .NET 4.0
2012 .NET 4.5
2015 .NET 4.6
2017 .NET 4.62

Die Entwicklung für .NET begann im Jahre 1998. Die Funktionen von .NET wurden kontinuierlich
weiterentwickelt. Seit 2017 ist die Entwicklung von Programmen unterschiedliche Betriebsysteme 6)

möglich.

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:dotnet_module.png

Last
update:
2018/10/03
13:58

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567909

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:39

Begriff Bedeutung

CLR7) Common Language Runtime. Herzstück des .NET Framework. Ist die
Laufzeitumgebung fürdie .NET-Applikationen.

Memory
Management

in diesem Teil wird die gesamte Speicherverwaltung erledigt. Teil des Memory
Management sind: Anlegen und Verwalten des Speichers, ROC8) Reference
Counting für Objekte, GC9) Garbage Collection

Common Type
System

Das gemeinsame Typen-System ermöglicht die Entwicklung und einfache
Interaktion zwischen Programmen, die mit unterschiedlichen
Programmiersprachen erstellt worden sind.

Lifecycle
Monitoring Überwacht die Systemeinheiten wie Programmen, Ressourcen, Objekten usw.

.NET Framework
Base Classes Basisklassen von .NET.

ADO.NET10) Active Data Objects. Eine Gruppe von Klassen, die Datenzugriffsdienste (z.B.
auf Datenbanken) zur Verfügung stellt.

XML11) Extensible Markup Language. Datenbeschreibungssprache, die in .NET für die
Beschreibung und den Austausch von Daten verwendet wird.

Threading Klassen, um Multithreading-Applikationen zu ermöglichen.

IO12) *Input Output*. Gruppe von Klassen, die Ein- und Ausdgaben unterstützen (z.B.
Dateien schreiben und lesen.

Net Implementation der gägngigen Netzwerkprotokolle wei TCP/IP.
Diagnostics Klassen für das Tracen und Debugen von Applikationen.

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:dotnet_framework.jpg

2026/01/18 02:39 5/48 Übersicht und Versionen

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Begriff Bedeutung

ASP.NET13) Active Server Pages. Basis für die Implementierung von Internet-
Anwendungen.

Web Services

Stellen Mechanismen zur Verfügung, um über das Internet mittels SOAP14)

(Simple Object Access Protocol) zu kommunizieren. Mit WEB-Services können
programmierbare Business-Logic-Komponenten auf Webservern zur Verfügung
gestellt werden, die von ASP.NET Clients transparent (soll heissen unabhängig
von ihrem physikalischen Standpunkt) genutzt werden können.

Web Form Umgebung, um eine Web-oberfläche zu erzeugen.
ASP.NET
Application
Services15)

Services zu Erstellung von ASP.NET-Applikationen.

Windows Forms Plattform zur Erstellung von WIN32-Desktop-Applikationen. Basierent auf der für
J++ entwickelten WCF16).

WPF17) Windows Presentation Foundation. Eine Plattform zur Erstellung von
Desktop-Applikationen die auf dem neuen XAML18)-Deklaration basiert.

Controls Eingeständige, grafische Einheit mit Funktionalität für die Erstellung und
Erweiterung Oberflächen.

Drawing Zeichfunktionalität.
Windows
Application
Services

Services zur Erstellung von Windows-Forms-Applikationen.

WCF19) Windows Communication Foundation. Entwicklungsklassen und Basis zur
Entwicklung SOA20)(service-oriented applications)

Ein neue Welt für .NET

Die .NET Programme basieren auf mehreren .NET Standards und Tools auf.

graph TB subgraph .NET Framework A[Windows Applications] end subgraph .NET Core B[Cross-
Platform Services] end subgraph Xamarin C[Mobile Applications] end A-->NET B-->NET C-->NET
subgraph Unified Platform NET(.NET Standard Library) end subgraph Common Infrastructure
X(Compilers) Y(Language) Z(Runtime Components) NET-->X NET-->Y NET-->Z end subgraph Tools
U(Visual Studio Windows) V(Visual Studio MAC) W(Visual Studio Code) U-.-V V-.-W end

Last
update:
2018/10/03
13:58

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567909

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:39

 Der Herstellungsprozess einer
Applikation gestaltet sich einfach. Jeder
Quellcode wird in eine einheitliche
Zwischensprache CIL21) (Common
Intermediate Language) übersetzt.

Dabei spielt es keine Rolle ob Ihr Programm in C#, Visual Baisc, J#, F# geschrieben wurde. Alle
werden in den identischen in CIL-Code übersetzt. Dieser CIL-Code ist nicht geschützt und kann von
jedermann eingesehen werden.

Die betriebsystemabhängige CLR22) (Common Language Runtime) überstetzt den CIL-Code zu Laufzeig
in den jeweiligen Maschinencode. Die CLR stellt somit die Verbindung zum Betriebsystem und zur
CPU-Code her.

Wie flexibel diese CLR ist zeigt sich an den Beispielen .NET Micro Framework23), Mono24), Windows
CE25).

Ein Beispiel eines CIL Codes

Diese Beispiel einer Console-Anwendung zeigt eine Meldung: „Hallo World“ an und ist direkt in CIL26)

geschrieben. Damit entfällt die Übersetzung aus der Hochsprache wie C#.

.assembly Hello {}1.

.assembly extern mscorlib {}2.

.method static void Main()3.
{4.
 .entrypoint5.
 .maxstack 16.

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:overview_of_the_common_language_infrastructure.png

2026/01/18 02:39 7/48 Übersicht und Versionen

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

 ldstr "Hello, world!"7.
 call void [mscorlib]System.Console::WriteLine(string)8.
 ret9.
}10.

Die APIs des .NET Standard 2.0

Die API27) (Application Programming Interface) des .NET Standard 2.0 beinhaltet folgende
Programmierschnittstellen bzw Klassen:

Technologie Klassen & Schnittstellen
XML XLinq, XML Document, XPath, Schema XSL
Serialization BinaryFormatter, Data Contract XML
Networking Sockets, Http, Mail, WebSockets
IO Files, Compression, MMF
Threading Threads, Thread Pool, Tasks
Core Primitives, Collections, Reflection, Interop, Linq

Erste Schritte im C#

Worum geht es?

Wir erstellen unser erstes C#-Programm und diskutieren das Ergebnis.

Was lernen Sie in diesem Kapitel?

Sie benutzen Visual Studio 2017, um ein „Hello World“-Programm in C# zu schreiben und Sie
verstehen dessen wesendlichen Elemente. Blöcke, Kommentare, Main(), Methode,
Namensräume (Namespaces), Hilfsysteme der Visual Studio .NET.

Hello World

Wählen Sie im Startfenster [Create New Project] oder wählen Sie unter [File]⇒[New Project], um
ein neues C#-Projekt zu erzeugen.

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:lernziele.png

Last
update:
2018/10/03
13:58

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567909

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:39

 Sie können ein neues Projekt auf der
Startseite von Visual Studio 2017
erstellen.

 Alternativ können Sie auch über das
Menu (wie oben beschirieben) erstellen.
Wählen Sie wie auf dem Bild ersichtlich,
als Projekttyp eine Windows-
Konsoleanwendung aus. Geben Sie
anschliessend folgenden C#-Code ein.

namespace HelloWorld1.
{2.
 using System;3.
 4.
 /// <summary>5.
 /// Beschreibung der Klasse Programm6.
 /// </summary>7.
 public class Program8.
 {9.
 public static int Main(string[] args)10.
 {11.
 System.Console.WriteLine("HelloWorld");12.
 System.Console.Read();13.
 return 0;14.

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:neues_projekt_erstellen_a.jpg
https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:neues_projekt_erstellen_b.jpg

2026/01/18 02:39 9/48 Übersicht und Versionen

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

 }15.
 }16.
}17.

Code Beschreibung

namespace HelloWorld
Defniert den Namensraum HelloWorld. Hilft beim
Organisieren von Codeteilen und ermöglicht systemweite
eindeutige Namen. Der Namensraum ist hyrarchisch
aufgebaut und kann beliebig tief sein.

{…}

Begrenzt von Programmblöcken. Blöcke werden durch
geschweifte Klammern gebildet. Sie können verschachtelt
werden. Mit Blöcken werden zusammengehöriende
Programmteile gekenntzeichnet. Blöcke zeigen dem
Compiler, wo ein Programmteil beginnt, wo er endet und
was alles dazu gehört.

using system

Definierteinen Aliea Namen im aktuellen Namenspace
HelloWorld un dermöglilcht es, die Bestandteile des
Namensraums-System zu benutzen, ohne den
entsprechenden Spezifizierer anzugeben. In unseren
Beispiel hätte wir statt
System.Console.WriteLine(„HelloWorld“); schlicht
Console.WriteLine(„HelloWorld“); schreiben können,
weil der entsprechende Alias angelegt wurde.

./*…*/

Komentare. /* bezeichnet den Beginn eines
Kommentarblocks, */beendet ihn. Diese Art des
Kommentars kann verschachtelt werden. In vielen
Programmeditoren werden Kommentare mit einer
bestimmten Schriftfarbe angezeigt (Visual Studio
Defaultfarbe grün).

public class Programm
Mit dieser Zeile wird innerhalb unseres Namensraums eine
öffentlich ansprechbare Klasse mit dem Namen Programm
angelegt.

public static int Main(string[] args)

Sobalt ein Programm gestartet wird, sucht die
Laufzeitumgebung nach dieser Methode. Jedes Programm
besitzt im Normalfall eine Main() Funktion, die als static
und public definiert werden muss. Der Modifikator static
besagt, dass die folgende Methode eine Klassenmethode
(im Gegensatz zu Objektmethode) darstellt. Dies wiederum
bedeutet: Der Aufruf einer statischen deklarierten Methode
kann zu jedem Zeitpunkt erfolgen, ohne das eine Instanz
der Klasse zur Verfügung stehen muss. In Spezialfällen
können mehr als eine Main() Methode in einer Applikation
angeboten werden (jedoch höchstens eine pro Klasse); In
diesem Fall muss dem Compiler angegeben werden,
welche Main Methode beim Start angespochen werden soll.
(csc /main/:HelloWorld HelloWorld.cs). Als Parameter
kann für die Main-Funktion ein String Array mit dem namen
args mitgegeben werden. Dieses String Array dient zur
Bearbeitung von Parameter, die beim Starten eines
Programms mitgegeben werden können. Auch hierzu
später mehr.

Last
update:
2018/10/03
13:58

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567909

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:39

Code Beschreibung

System.Console.WriteLine(„HelloWorld“);

Aus dem Namensbereich System wird die Mehode
WriteLine der Console aufgerufen. Als Parameter wird hier
eine (hartcodierte) Zeichenkette ausgegeben.
Abgeschlossen werden C#-Befehle immer mit einem
Strichpunkt. Es ist daher möglich, mehrere Anweisungen in
einer Zeile anzugeben (wird nicht empfohlen) sowie eine
Anweiseung auf mehrere Zeilen zu verteilen.

return 0; Beendet die Ausführung der Mehtode Main() und gibt den
Wert 0 zurück.

 C# unterscheidet Gross/Kleinschreibung.

Zusammenfassung

Wir haben in diesem Kapitel gesehen, wie wir mit dem Application Wizard ein Programm im Visual
Studio .NET erzeugten können. Wir haben den erzeugten Applikations-Rumpf einer Konsolen-
Applikation betrachtet und ihn um die Funktionalitäten Ausgabe eines Strings auf der Konsole und
warten auf eine Eingabe erweitert. Anschliessend habe wir die einzelnen Elemente der Applikation
„HelloWorld“ besprochen.

Kontrollfragen

Warum ist die Methode Main() so wichtig für ein Programm?
Was bedeutet das Wort static?
Welche Arten von Kommentaren gibt es?

Klassen und Objekte

Worum geht es?

Für die Programmentwicklung ist eine Programmstrukturierung schon bei kleineren, mit Sicherheit
jedoch bei mittleren bis grossen Projekten, unumgänglich. C# bietet hier einige Möglichkeiten an, die

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:hinweis.png
https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:lernzielkontrolle.png

2026/01/18 02:39 11/48 Übersicht und Versionen

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

in diesem Kapitel behandelt werden.

Was lernen Sie in diesem Kapitel?

 Sie lernen in diesem Kapitel folgendes kennen: Klassen und Objekte, Felder einer
Klasse, Methoden einer Klassen, Namensräume

Einführung

Begriffe

Zuerst ein paar wichtige Begriffsdefinitionen, auf denen wir im weiteren Verlauf aufbauen werden.

Klasse
Eine Klasse ist ein Bauplan zur Erzeugung konkreter Objekte. Sie
bestehen aus Attributen (Eigenschaften) und Methoden
(Verhaltensweisen). Eine Klasse entspricht dem Datentyp eines Objekts.

Objekt oder auch Instanz
einer Klasse

Sind Instanzierungen von Klassen. Wenn ein Objekt erzeugt wird, wird
dynamisch Speicher für diese Objekt angelegt, der irgendwann wieder
freigegeben werden muss. In C# müssen wir uns nit mehr explizit um
die Freigabe des durch Objekte reservierten Speicher kümmern, das
erledigt die GC28) (Garbage Collection).

Member einer Klasse Sammelbegriff für die Attribute und Methoden einer Klasse
Methoden oder auch
Memberfunktionen einer
Klasse

Funktionalität einer Klasse (definieren Verhalten).

Deklaration von Klassen

Die Klassendeklaration besteht aus dem Namen der Klasse, den Feldern und der Methode Klasse. Eine
typische Klassendeklaration sehen wir im Folgenden. Dabei wird innerhalb des Namensraums RentCar
die Klasse Vehicle angelegt.

namespace RentCar1.
{2.
 public class Vehicle3.
 {4.
 // Class Implementation5.
 }6.
}7.

Erzeugen von Instanzen einer Klasse

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:lernziele.png

Last
update:
2018/10/03
13:58

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567909

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:39

Warum braucht man überhaupt Instanzierungen von Klassen?

Das kommt daher, dass aus objektorientierter Sicht eine Klasse von der Idee her lediglich eine Art
Schablone für konkrete Objekte darstellt. Nehmen wir als Beispiel die Klasse Vehicle: Will ich mit
dieser Klasse z.B. ein Objekt erzeugen, das einem Auto entspricht, lege ich ein Objekt an und fülle die
Felder entsprechend den Eigenschaften eines Autos ab. Das bedeutet, das Objekt Auto ist erst nach
der Instanzierung und der entsprechenden Initialierung für das Programm verfügbar.

Die Anweisung, um ein Motorraf und zwei Auto-Objekte anzulegen, sehen dann folgender Massen aus:

namespace RentCar1.
{2.
 using System;3.
 4.
 /// <summary>5.
 /// Summary description for GarageMain.6.
 /// </summary>7.
 public class GarageMain8.
 {9.
 public static int Main(string[] args)10.
 {11.
 Vehicle vehicle1 = new Vehicle("Fahrrad");12.
 Vehicle vehicle2 = new Vehicle("Motorrad");13.
 Vehicle vehicle3 = new Vehicle("Auto");14.
 Vehicle vehicle4 = new Vehicle("Auto");15.
 return 0;16.
 }17.
 }18.
 19.
 public class Vehicle20.
 {21.
 private string _name;22.
 23.
 // Konstruktor24.
 public Vehicle(string name)25.
 {26.
 _name = name;27.
 }28.
 }29.
}30.

Code Bedeutung

new
Mit dem reservierten Wort new werden Instanzen einer Klasse erzeugt, spricht Objekte der
Klasse angelegt und initialisiert. Die Anweisung bedeutet für den Compiler: Erzeuge eine Kopie
des noachfolgenden Datentyps im Speicher meines Computers!

Sie erkennen in vorangehenden Beispiel, dass von einer Klasse häufig mehrere Objekte angelegt
werden, die sich durch unterschiedlich abgefüllten Felder unterscheiden, die die Eingeschaften eines
Objektes repräsentieren.

2026/01/18 02:39 13/48 Übersicht und Versionen

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Felder einer Klasse

In C# unterscheidet man drei Arten von Variablen:

Felder oder auch Instanzvariablen
Statische Felder (Klassenvariablen)
Lokale Variablen

Felder sind nichts anderes als Variablen oder Konstanten, die innerhalb der Klasse deklariert werden
und auf die über ein Objeekt zugegriffen werden kann. Felder entsprechen also den Objektdaten, die
den Zustand eines Objekts speichern.

Syntax: [Modifikatoren] Datentyp Bezeichner [=Initialwert]

Beispiel:

public string _firstname = „Frank“;

private int _nrOfEntry = 1;

Notation: [] eckige Klammern bezeichnen optimale Teile einer Syntax. Bedeutet in obigen
Beispiel: Ein Modifikator kann, muss aber nicht vor dem Datentyp stehen.

Gross- Kleinschreibung: C# ist Case-sensitiv, das heisst alleMitarbeiter und AlleMitarbeiter
sind für C# unterschiedliche Bezeichner.

Der Datentyp int ist ein Alias für den im Namensraum-System definierten Basistyp Int32. Die
Datentypen sind in Kapitel beschrieben.

Initialisierung: Jede Variable muss von der ersten Benutzung initialisiert werden.

Beispiele für gültige Bezeichner:

myName
_theName
x1
Name5S7

Beispiele für ungültige Bezeicher:

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:hinweis.png
https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:hinweis.png

Last
update:
2018/10/03
13:58

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567909

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:39

1stStart ⇒ Zahl am Anfang
Mein Name ⇒ Leerzeichen
&again ⇒ ungültiges Zeichen

Modifikatoren

Der Programmierer beeinflusst mit Modifikatioren die Sichtbarkeit und das Verhalten von Variablen,
Konstanten, Methoden und Klassen oder auch anderen Objekten. Die Modifikatoren in C#:

Modifikator Bedeutung

public Auf die Variable oder Methode kann auch ausserhalb der Klasse zugegriffen
werden.

private Auf die Variable doer Methode kann nur von innerhalb der Klasse bzw. des
Datentyps zugegriffen werden. innerhalb von Klassen ist dies Standard.

internal Der Zugriff auf die Variable oder Methode ist beschränkt auf das aktuelle Assembly.

protected Der Zugriff auf die Variable oder Methode ist nur innerhalb der Klasse und durch
Klassen, die von der aktuellen Klassen abgeleitet sind, möglich.

protected
internal

Dies entspricht einer logischen ODER-Verknüpfung oder Modifikatoren internal
und protected.

abstract Dieser Modifikator bezeichnet Klassen, von denen keine Instanz erzeugt werden
kann. Von Abstrakten muss immer zuerst eine Klasse bgeleitet werden. Wird dieser

const Der Modhifikator für Konstanten. Der Wert von Felder, die mit diesem Modifikator
deklariert wurden, ist nicht mehr veränderbar.

event Deklariert ein Erreignis.

extern
Dieser Modifikator zeigt an, dass die entsprechenden bezeichnete Methode extern
(also nicht innerhalb des aktuellen Projekts) deklariert ist. Sie können so auf
Methoden zugrifen, die in DLLS deklariert sind.

override Sie können abstrakte oder virtuelle Methoden aus einer Basisklasse in der
abgeleitet Klasse überschreiben, indem Sie die Methode mit override deklarieren.

readonly
Mit diesem Modifiaktor können Sie ein Datenfeld deklariert, dessen Werte von
ausserhalb der Klasse nur gelesen werden können. Innerhalb der Klasse ist es nur
möglich, Werte über den Konstruktor oder direkt bei der Deklaration zuzuweisen.

sealed Der Modifikator sealed versiegelt eine Klasse. Fortan können von dieser Klasse
keine anderen Klassen mehr abgeleitet werden.

static
Ein Feld oder eine Methode, die als static deklariert ist, gilt als Bestandteil der
Klasse selbst. Die Verwendung der Variable bzw. der Aufruf der Methode benötigt
keine Instanzierung der Klasse.

virtual
der Modifikator virtual| ist quasi das Gegenstück zu override. Mit virtual werden
die Methoden der Basisklassen festgelegt, die später überschieben werden können
(mittels override).

Die möglichen Modifikatoren können miteinander kombiniert werden, ausser wenn sie sich
widersprechen (z.B. public und private als Teil einer Verablendeklaration).

Modifikatoren stehen bei einer Deklaration immer am Anfang.

Wird ein Feld innerhalb einer Klasse ohne Angabe eines Modifikators deklariert, so dieses Feld
defaultmässig als private angelegt.

2026/01/18 02:39 15/48 Übersicht und Versionen

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Für jede Variable, jede Methode, Klasse oder jeden selbst definierten Datentyp gilt immer der
Modifikator, der direkt davorsteht.

Variable und Felder

Lokale Variable ⇒ Lokale Variable sind innerhalb eines durch geschweifte Klammern bezeichneten
Programmblocks deklariert. Es kann nur in diesem Bereich auf sie zugegriffen werden.

public class TestClass1.
{2.
 public static void Ausgabe()3.
 {4.
 Console.WriteLinde("x hat den Wert {0}.", x); // Fehler!5.
 }6.
 7.
 public static void Main()8.
 {9.
 int x = Int32.Parse(Console.ReadLine()); // Lokale Variable x10.
 Ausgabe();11.
 }12.
}13.

Instanzvariablen Normale Felder einer Klasse. Sie heissen Instanzvariablen, weil sie erst verfügbar
sind, nachdem eine Instanz der Klasse angelegt worden ist.

Klassenvariablen
Auch statische Variablen genannt, weil sie mit dem Modifikator static angelegt
werden. Sie sind verfügbar, wenn innherhalb des Programms der Zugriff auf die
Klasse sichergestellt ist. Dies bedeutet: Es muss keine Instanz der Klasse geben.
Mehr Informationen im Kapitel.

this

this bezeichnet eine Referenz auf die eigene Instanz.

Wie sieht im folgenden Beispiel die Ausgabe aus?

//Beispiel lokale Variable1.
using System;2.
 3.
public class TestClass4.
{5.
 private int x = 10;6.
 public void DoOutput()7.
 {8.
 int x = 5;9.
 Console.WriteLine("X hat den Wert {0}.", x); // Lokale Variable10.

Last
update:
2018/10/03
13:58

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567909

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:39

x!!! -> x=5
 }11.
}12.
 13.
public class Beispiel14.
{15.
 public static void Main()16.
 {17.
 TestClass tst = new TestClass();18.
 tst.DoOutput();19.
 }20.

Wenn nichts anderes angegeben ist, nimmt der Compiler die Variable, die er in der Hierarchie zuerst
findet. Dabei sucht er zuerst innerhalb des Blocks, in dem er sich gerade befindet, und steigt dann in
der Hierarchie nach oben. In unserem Fallest die erste Variable, die er findet, die in der Methode
DoOutput() deklarierte lokale Variable x.

Es ist möglich, innerhalb der Methode DoOutput() auf das Feld zuzugreifen, obwohl dort eine Variable
mit demselben Namen existiert. Dazu verwendet man das reservierte Wort this.

//Beispiel lokale Variable1.
using System;2.
 3.
public class TestClass4.
{5.
 private int x = 10;6.
 public void DoOutput()7.
 {8.
 int x = 5;9.
 Console.WriteLine("X hat den Wert {0}.", this.x);// die10.
Instanzvariable x!! -> x=10
 }11.
}12.
 13.
public class Beispiel14.
{15.
 public static void Main()16.
 {17.
 TestClass tst = new TestClass();18.
 tst.DoOutput();19.
 }20.

2026/01/18 02:39 17/48 Übersicht und Versionen

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

 Bei allen mit this quantifizierten Variablen handelt es sich immer um Instanzvariablen.

Deklaration von Konstanten

C# hat zwei verschiedene Arten von Konstanten: Compilezeitkonstanten und Laufzeitkonstanten. Ein
Beispiel:

using System;1.
public class ConstantValues2.
{3.
 public static readonly int StartValue = 0; // Laufzeitkonstante4.
 public const double PI = 3.141592654; // Compilezeitkonstante5.
}6.

Beide hier deklarierte Konstanten sind statisch. Da Konstanten immer demselben Wert haben, sind sie
implizit statisch. Vom Konstruktor initialisierte readonly-Wert konnten hingegen für jedes Objekt einen
anderen Inhalt haben.

Compilezeitkonstante
PI ist eine Compilezeit-Konstante. Überall wo der Compiler auf dieses Sysbol
trifft, wird die effektive Zahl eingesetzt. Compilezeitkonstanten existieren
nur für primitive Datentypen, Enums und Strings. Sie müssen bei der
Deklaration initialisert werden.

Laufzeitkonstante
Bei Laufzeitkonstanten, die mit dem Schlüsselwort readonly deklariert sind,
wird vom Compiler eine Referenz auf die Variable gesetzt. Sie können in
Konstruktor initialisiert werden und existieren für beliebige Datentypen.

Der Unterschied zeigt sich vor allem bei Konstanten, die in Bibliotheken definiert sind. Bei Anpassung
des Werts einer Bibliothekskonstatnten ändern sich der Wert in abhängigen Assemblies erst bei deren
Neu-Compilation. Bei readonly-Konstanten müssen die abhängingen Assemblies nicht neu compiliert
werden.

Verwenden Sie wenn immer möglich readonly-Konstanten, ausser bei Konstanten, die ihren Inhalt
sicher nie ändern.

Methoden einer Klasse

Methoden stellen die Funktionen einer Klasse dar.

Syntax [Modifikator] Ergebnistyp Bezeichner (Parameter[, Parameter]]){ Anweisungen }

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:hinweis.png

Last
update:
2018/10/03
13:58

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567909

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:39

Auch hier gilt: wenn für eine Methode kein Modifikator angegeben wird, wird sie als private angelegt.

In C# sind (im Gegensatz zu C++) nie Forward-Deklarationen nötig, d.h. Sie können Ihre
Methoden deklarieren, wo Sie wollen - der Compiler wird sie finden.

Das Ergebnis void bedeutet, dass die Methode keinen Wert zurückliefert. Bei einer solchen Methode
handelt es sich lediglich um die Ausführung von einem Block von Anweisungen. Die deklarierten
Typen müssen genau eingehalten werden. C# ist eine ausgesprüchene typensichere Sprache.
Innerhalb einer Methode wird ein Wert mittels der Anweisung return zurückgeliefert. Auch hier gilt:
Der Typ, den Sie mit return verwenden, muss mit der Deklaration des Ereignistyps der
entsprechenden Methode übereinstimmen.

public class TestClass1.
{2.
 public int a; // Instanzvariablen sind normalerweise private!3.
 public int b;4.
 5.
 public double Dividieren()6.
 {7.
 return a/b; // Vorsicht: dies ist eine Integerdivision8.
 }9.
}10.
 11.
public class MainClass12.
{13.
 public static void Main()14.
 {15.
 TestClass myTest = new TestClass();16.
 17.
 myTest.a = 10;18.
 myTest.b = 15;19.
 double ergebnis1 = myTest.Dividieren(); // Ok...20.
 int ergebnis2 = myTest.Dividieren(); // FEHLER!!!21.
10/15=2/3=0.66666..
 // Integer kann nur ganze22.
Zahlen enthalten.
 }23.
}24.

Parameterübergabe

An Methoden können Parameter übergeben werden, die sich innerhalb der Methode wie lokale

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:hinweis.png

2026/01/18 02:39 19/48 Übersicht und Versionen

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Variablen verhalten. Wir unterscheiden zwei Arten von Parameter:

Werteparameter
Übergabe byValue

Mit Werteparameter werden Werte an einen Methode übergeben, die in
dieser benutzt werden können, ohne dass die ursprüngliche Variablen
(sprich die Variablen des Aufrufers) verändert werden können. In der
aufgerufenen Methode werden implizit Kopien für die Variablen
angelegt.

Referenzparameter
Übergabe byReference

Referenzparameter werden durch das reservierte Wort ref deklariert. Es
wird in diesem Fall keine Wert, sondern eine Referenz auf die Variable
des Aufrufers übergeben. Alle Änderungen an der Variablen innerhalb
der aufgerufenen Methode ändern auch die Variable in der
aufgerufenden Methode. Die Variablen müssen von dem Methodenaufruf
initialisiert werden. Hier wird in der aufgerufenen Methode keine Kopie
angelegt.

// Parameterübergabe byReference1.
public void Swap(ref int a, ref int b)2.
{3.
 int c = a;4.
 a = b;5.
 b = c;6.
}7.
 8.
// aufrufende Methode9.
for (int i=1; i<theArray.Length; i++)10.
{11.
 if (theArray[i-1] > theArray[i])12.
 {13.
 Swap(ref theArray[i-1], ref theArray[i]);14.
 }15.
}16.

Wenn Sie eine Methode mit Referenzparametern aufrufen, müssen Sie beim Aufruf das reservierte
Wort ref benutzt.

Instanzen von Klassen werdem immer als Referenz übergeben (auch ohne Verwendung von
ref). Referenzparameter müssen vor dem Aufruf initialisiert werden.

out-Parameter Funktionieren wie ref-Parameter, müssen jedoch im Gegensatz zu diesen vorher
nicht initialisiert werden.

Ein Beispiel für out-Parameter:

using System;1.

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:hinweis.png

Last
update:
2018/10/03
13:58

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567909

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:39

 2.
class TestClass3.
{4.
 // Parameterübergabe mittels out-Parameter5.
 public static void IsBigger(int a, int b, out bool isOK)6.
 {7.
 // Erste Zuweisung = Initialisierung8.
 isOK = a > b;9.
 }10.
 11.
 public static void Main()12.
 {13.
 bool isOK; // nicht initialisiert ...14.
 int a;15.
 int b;16.
 17.
 a = Convert.ToInt32(Console.ReadLine());18.
 b = Convert.ToInt32(Console.ReadLine());19.
 20.
 isBigger(a, b, out isOK);21.
 22.
 Console.WriteLine("Ergebnis a>b: {0}", isOK);23.
 }24.
}25.

Optionale Parameter

Ein von C++ Entwicklern lange vermisstes Feature findet mit .NET 4 Einzug in die
Programmiersprache C#. Parameter werden als optional deklariert, indem ein Defaultwert für sie
angegeben wird. Im folgenden Beispiel sind y und z optionale Parameter und können beim Aufruf
weggelassen werden.

public void Calculate(int x, int y=5, int z=7);// Deklaration der1.
Methode.
// Aufruf der Methode2.
Calculate(1, 2, 3); // normaler Aufruf der Methode3.
Calculate(1, 2,); // weglassen von z => identisch wie Calculate(1, 2,4.
7)
Calculate(1); // weglassen von y & z => identisch wie Calculate(1, 5,5.
7)

Es ist auch möglich, die Parameter explizit beim Namen zu nennen.

Calculus(1, z, 3); // Übergabe von z mit Namen1.

2026/01/18 02:39 21/48 Übersicht und Versionen

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Optionale Parameter dürfen auch für Konstruktoren und Indexer verwendet werden.

Überladen von Methoden

hierbei handelt es sich um die Möglichkeit, mehrere Methoden mit dem gleichen Namen zu
deklarieren, die aber unterschiedliche Funktionen ausführen. Der Compiler muss die Methode beim
Aufruf eindeutig identifizieren können. Deshalb müssen sich die Methoden durch Anzahl und/oder
Type der Übergabeparameter unterscheiden.

Folgendes Beispiel zeigt die Überladung der Methode Addiere in 3 verschiedenen Variablen:

using System;1.
 2.
public class Addition3.
{4.
 public int Add(int a, int b){ return a+b; }5.
 public int Add(int a, int b, int c){ return a+b+c; }6.
 public int Add(int a, int b, int c, int d){ return a+b+c+d; }7.
}8.
 9.
public class Beispiel10.
{11.
 public static void Main()12.
 {13.
 Addition myAdd = new Addition();14.
 15.
 int a = Convert.ToInt32(Console.ReadLine());16.
 int b = Convert.ToInt32(Console.ReadLine());17.
 int c = Convert.ToInt32(Console.ReadLine());18.
 int d = Convert.ToInt32(Console.ReadLine());19.
 20.
 Console.WriteLine("a+b = {0}", myAdd.Addiere(a,b));21.
 Console.WriteLine("a+b+c = {0}", myAdd.Addiere(a,b,c));22.
 Console.WriteLine("a+b+c+d = {0}", myAdd.Addiere(a,b,c,d));23.
 }24.
}25.

Die Methoden, die überladen werden sollen, müssen sich in der Art und/oder in der Menge der
Übergabeparameter unterscheiden. Der Ergebnistyp hat auch die Überladung von Methoden
keinen Einfluss.

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:hinweis.png

Last
update:
2018/10/03
13:58

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567909

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:39

Statische Methoden / Variablen

Für statische Teile einer Klasse gilt, dass für deren Benutzung kein Instanz der Klasse existieren muss,
Solche Variablen und Methoden gehören zur Klasse und nicht zum Objekt.

Das bedeutet:

Wenn mehrere Instanzen einer Klasse erzeuget wurden und in jeder dieser Instanzen wird eine
statische Methode aufgerufen, dann ist das immer dieselbe Methode!

Ein Beispiel:

/* Beispielklasse statische Felder */1.
public class Vehicle2.
{3.
 int anzVerliehen;4.
 static int anzGesamt=0;5.
 6.
 public void Ausleihen()7.
 {8.
 anzVerliehen++;9.
 anzGesamt++;10.
 }11.
 12.
 public void Zurueck()13.
 {14.
 anzVerliehen--;15.
 anzGesamt--;16.
 }17.
 18.
 public int GetAnzahl()19.
 {20.
 return anzVerliehen;21.
 }22.
 23.
 public static int GetGesamt()24.
 {25.
 return anzGesamt;26.
 }27.
}28.

Innerhalb einer statischen Methode können Sie nur auf lokale und statische Variable zugreifen,
nicht aber auf Instanzvariable. In C# können Sie keine globalen Variablen anlegen. Sie
brauchen immer eine Klasse dazu. Eine Möglichkeit besteht nun darin, eine Klasse z.B. mit

dem Namen GlobaleVariable anzulegen, in denen die allgemein zu Verfügung stehenden Variablen
public static deklariert werden. Über den Klassenbezeichner können so die Variablen von jedem

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:hinweis.png

2026/01/18 02:39 23/48 Übersicht und Versionen

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

anderen Ort in der Appliakation benutzt werden.

Zugriff auf statische Methoden und Variablen

Ein Beispiel:

// Beispielklasse statische Methoden1.
using System;2.
 3.
public class TestClass4.
{5.
 public in myValue;6.
 7.
 public static bool SCompare(int theValue)8.
 {9.
 return theValue > 0;10.
 }11.
 12.
 public bool Compare(int theValue)13.
 {14.
 return myValue == theValue;15.
 }16.
}17.
 18.
public class Beispiel19.
{20.
 public static void Main()21.
 {22.
 TestClass myTest = new TestClass();23.
 24.
 //Kontrolle mittels SCompare25.
 bool test1 = TestClass.SCompare(5);// Methodenaufruf26.
 27.
 //Kontrolle mittels Compare28.
 myTest.myValue = 0;29.
 bool test2 = myTest.Compare(5);// Methodenaufruf30.
 31.
 Console.WriteLine("Kontrolle 1 (SCompare): {0}", test1);32.
 Console.WriteLine("Kontrolle 2 (Compare): {0}", test2);33.
 }34.
}35.

SCompare() ist eine statische Methode, Compare() hingegen ist eine Instanzmethode. Wenn wir auf
SCompare() zugreifen möchten, geht dies nicht über das erzeugte Objekt, sondern wir müssen den
Klassenbezeichner verwenden.

Last
update:
2018/10/03
13:58

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567909

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:39

Statische Klasse

Funktionsbibliothek werden oft in Klassen mit rein statischen Methoden zusammengefasst. Ab .NET
2.0 ist es möglich, die Klasse selbst statisch zu deklarieren, damit von dieser Klasse keine Objekte
instanziert werden können.

Folgende Regeln gelten für statische Klassen:

Enthalten nur static members
Können nicht instanziert werden
Sind sealed
Haben keinen Konstruktor

Statische Klassen eignen sich gut um z.B. eine Methoden-Sammlung von mathematischen Methoden
zu erstellen. Da diese nicht instanziert werden muss, können die Methoden direkt aufgerufen werden.

Folgendes Beispiel zeigt Umwandlungsfunktionen von Celscius nach Fahrenheit.

public static class TemConverter1.
{2.
 public static double CtoF(double celsius)3.
 {4.
 return (Celsius * 1.8) + 32; // Convert to Fahrenheit5.
 }6.
 7.
 public static double FtoC(double fahrenheit)8.
 {9.
 return (fahrenheit - 21) / 1.8;10.
 }11.
}12.

VB.NET realisiert diese Funktionalität in einem Modul.

Initialisierung

Konstruktoren

Beim Erzeugen eines Objekts einer Klasse mit Hilfe des Operators new wird der sogenannte
Konstruktor der entsprechenden Klasse aufgerufen.

Der Konstruktor ist eine Methode ohne Rückgabewerte (auch wenn nicht void bei der Deklaration
angegeben wird), die den Namen der Klasse trägt. Normalerweise ist er mit dem Modigikator public

2026/01/18 02:39 25/48 Übersicht und Versionen

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

versehen, damit er von aussen zugreifbar ist.

Der Konstruktor hat die Aufgabe, sämtliche Instanzvariablen einer Klasse zu initialisieren und kann
überladen werden.

Folgendes Beispiel zeigt eine Klasse mit zwei Konstruktoren, den sogenannten Default-Konstruktor
ohen Parameter und einen Konstruktor mit Parameter zur Initialisierung der Instanzvariablen.

public class Coordinate1.
{2.
 private int x, y; // 2 Instanzvariablen3.
 4.
 public Coordinate() // Default-Konstruktor5.
 {6.
 x = 0;7.
 y = 0;8.
 }9.
 10.
 public Coordinaten(int A, int B)// Konstruktor mit Parametern11.
 {12.
 this.x = A;13.
 this.y = B;14.
 }15.
}16.

Wird kein Konstruktor angelegt, erzeugt der Compiler automatisch einen Default-Konstruktor. Sobald
aber ein Konstruktor vorhanden ist, entfällt dieser automatische Mechanismus.

Konstruktoren können einander gegenseitig aufrufen. So kann der Initilisierungscode wieder
verwendet werden.

public class Coordinate1.
{2.
 private int x, y; // 2 Instanzvariablen3.
 4.
 public Coordinate() : this(0,0) // Default-Konstruktor5.
 {6.
 }7.
 8.
 public Coordinate(int A, int B) // Konstruktor mit Parameter9.
 {10.
 this.x = A;11.
 this.y = B;12.
 }13.
 14.
 public Coordinate(int A, int B): this(23, 45, 12) // Konstruktor mit15.
vorhergehenden
 // Aufruf des16.
Konstruktors mit drei Parameter

Last
update:
2018/10/03
13:58

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567909

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:39

 {17.
 this.x = A;18.
 this.y = B;19.
 }20.
 21.
 public Coordinate(int A, int B, int C) // Konstruktor mit drei22.
Parameter
 {23.
 }24.
 25.
}26.

Destruktoren / Finalizer

Der Destrukor erledigt im Prinzip die Aufräumarbeiten beim Löschen eines Objektes. Destruktoren
heissen ebenfalls gleich wie die Klassen, mit einem vorangestellten Tilte Zeichen „~“.

public class File1.
{2.
 ~File() // Destruktor (kein Modifikator)3.
 {4.
 }5.
}6.

Zu einem späteren Zeitpunkt werden wird noch feststellen, dass mit folgender Code-Sequenz ein
reservierter Speicher eines Objektes wieder freigegeben werden kann.

File f = new File(); --> f = null; // Referenz entfernen und dann...
GC.collect(); // ...aufrufen.

Im Gegensatz zu C++ ist der Destruktor in C# nicht deterministisch. Das bedeutet, dass er zu einem
unbekannten Zeitpunkt vom GC29) (Garbage Collection) aufgerufen wird. Man spricht deshalb oft auch
von einem Finalizer. Meinstens ist es nicht nötig, in C# einen Destruktor zu erstellen, da der GC30)

(Garbage Collection) den Speicher wieder freigibt. Nur bei der Verwendung von unmanaged
Ressourcen wie z.B. Datenbankverbindung oder externen Windows-Ressourcen (Bitmaps, Fonts) ist
ein Destruktor notwendig. Es gilt die Regel, dass Objekte, die auf andere Objekte mit einem
Destruktor referenzieren, selbst auch einen Destruktor haben.

Weiteres zur Funktionsweise des GC31) (Garbage Collection) wird im Dokument xxxx weiter
eingegangen.

2026/01/18 02:39 27/48 Übersicht und Versionen

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Namensräume

Ein Namensraum bezeichnet einen Gültigkeitsbereich für Klassen. Innerhalb eines Namensraums
können mehrere Klassen oder auch weitere Namensräume deklariert werden.

Ein Namensraum ist nicht zwangsläufig auf eine Datei beschränkt; innerhalb einer Datei können
mehrere Namensräume deklariert werden. Ebenso ist es möglich, einen Namensraum über zwei oder
mehrere Dateien hinweg zu deklarieren.

In einem Namensraum können nur Klassen oder andere Namensräume deklariert werden, nicht
jedoch Methoden oder Felder.

Beispiel einer Namensraum-Deklaration:

namespace MySpace1.
{2.
 // Deklarationen von Klassen und Namensräumen3.
}4.

Wenn Sie einen andere Klasse im selben Namensraum, aber in einer andere Datei deklarieren
möchten, geben Sie im Namensraum einen namespace mit demselben Namen an.

Namensräume können verschachtelt werden. Das sieht für den Namensraum MyName.Dok so aus:

namespace MySpace1.
{2.
 namespace Dok3.
 {4.
 // Deklaration für MySpace.Dok5.
 }6.
}7.

Verwenden von Namensräumen

Sie haben zwei Möglichkeiten, wie Sie Namensräume verwenden können. Mit Spezifizierern (fully
qualified name):

CSharp.EineKlasse.EineMethode(); // Namensraum CSharp1.
 2.
// oder mittels des Schlüsselworts using3.
 4.
using CSharp5.
EineKlasse.EineMethode();6.

Last
update:
2018/10/03
13:58

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567909

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:39

Damit werden alle Symbole des Namenspace CSharp importiert.

Der globale Namensraum

Alle Klassen, die nicht in einem angegebenen Namensraum deklariert werden, werden automatisch
dem globalen Namensraum von C# zugewiesen. Der globale Namensraum ist immer vorhanden. Die
Verwendung von eigenen Namensräumen sie hier ausdrücklich empfohlen.

Zusammenfassung

Wir haben in diesem Kapitel Klassen, Objekte und Namensräume sowie deren Elemente und
verschiedene Zugriffsarten betrachtet. Das Verständnis dieser Punkte ist Voraussetzung für deie
folgenden Kapitel.

Kontrollfragen

Von welcher Basisklasse sind alle Klassen in .NET abgeleitet? Object. Die Mutter aller
Klassen.

Welche Bedeutung hat das reservierte Wort new? Konstruktor aufrufen und
Instanzierung erstellen.

Warum sollen Bezeichner für Variablen und Methoden immer eindeutige,
sinnvolle Namen tragen?

Zur besseren Orientierung
und lesbarkeit.

Welche Sichtbarkeit hat ein Feld, wenn bei der Deklaration kein
Modifikator benutzt wurde? private

Was ist der Unterschied zwischen Referenz- und Werteparametern? …
Worauf muss beim Überladen von Methoden geachtet werden? …
Wie können Sie innerhalb einer Methode auf ein Feld einer Klasse
zugreifen, wenn eine lokale Variable mit demselben Namen existiert? …

Mit welchem reserviert Wort wird ein Namensraum deklariert? namespace {}

Übung Klasse und Objekte

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:lernzielkontrolle.png

2026/01/18 02:39 29/48 Übersicht und Versionen

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Legen Sie ein neues Projekt vom Type Console Application an.1.
Deklarieren Sie eine Klasse, in der Sie einen String, einen Integer und einen Double speichern2.
können. Deklarieren Sie die Felder als private. Erstellen Sie auch einen Defaultkonstruktor für
die Klasse.
Erstellen Sie ein Konstruktor mit 3 Parameter, sodass die Felder bereits bei der Instanzierung3.
mit einem Wert belegt werden können.
Erstellen Sie eine statische Methode mit dem Namen Multiply, die zwei Integer-Werte4.
miteinander multipliziert.
Erstellen Sie drei gleichnamige (überladene) Methoden mit dem Namen SetValue, um den5.
Feldern Werte zuweisen zu können. Hinweis: Später werden wir diese Funktionalität mit
Properties realisieren.
Erstellen Sie eine Methode AddString, die einen als Parameter übergebenen String dem in der6.
Klasse als Feld gespeicherten String anfügt. Um zwei Strings aneinander zu fügen, können Sie
den + Operator benutzen. Die Methode soll keinen Wert zurückliefern.

Grundlagen Datentypen

Worum geht es?

Programme tun ja eigentlich nichts anderes, als Daten zu verwalten und damit zu arbeiten. Jede
Programmiersprache stellt zur effizienten Datenverarbeitung verschiedene Datentypen zur Verfügen.

Was lernen Sie in diesem Kapitel

Wir erforschen in diesem Kapitel die wichtigsten .NET-Datentypen und zeigen, wie Sie damit
umgeben können.

Datentypen

Speicherverwaltung

.NET kennt zwei Arten von Datentypen:

Wertetypen Auch wertebehaftete Typen genannt. Bei diesen Typen wird der Inhalt der Variablen
direkt gespeichert. Die Daten liegen auf dem Stack.

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:uebungen.png
https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:lernziele.png

Last
update:
2018/10/03
13:58

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567909

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:39

Referenztypen Speichert einen Verweis auf Daten. Die Daten selbst werden auf dem Heap
gespeichert.

Heap und Stack sind zwei verschiedene Speicherbereiche in einem Programm.

Stack
Hier werden Daten so lange abgelegt, wie sie tatsächlich verwendet werden und werden dann
automatisch freigegeben. Dazu gehören lokale Variablen und Parameter von Methoden. Sie
leben bis zum Verlassen des Anweisungsblocks, in dem sie angelegt bzw. in den sie
übergeben wurden. Auf dem Stack werden alle Grundtypen (int, long, byte usw.) abgelegt.

Heap

Speicher auf dem Heap muss angefordert werden und kann, wenn er nicht mehr benötigt
wird, wieder freigegeben werden. Die GC32) (Garbage Collection) löscht auf dem Heap
angelegte Objekte zu einem uns unbekannten Zeitpunkt. Klasseninstanzen und String werden
typischerweise auf dem Heap abgelegt.

Die Null-Referenz

in C# ist es möglich, dass eine Objektreferenz zwar vorhanden ist, das Objekt aber noch keinen Inhalt
besitzt. Das reservierte Wort null ist der Standartwert für alle Referenztypen.

Nullbare Typen

.NET 2.0 brachte das Feature der Nullable Types für Wertetypen. Nullbare Typen enthalten alle
Werte des darunterliegenden Datentypen und zusätzlich einen Wert für den undefinierten Zustand
(null). Dies ist vor allem in der zusammenarbeit mit Datenbanken interessant. So ist es z.B. möglich,
einen Integer der Wert null zuzuweisen.

int? x;1.
if (x != null) // x kann auch den Wert null annehmen2.

Solche Typen werden in C# mit dem Fragezeichen deklariert. Das Fragezeichen ist für die Kurzform
für SystemNullable<T>, wobei für den gegebenen Datentypen steht. Das heisst für T kann jeder
beliebiger Type oder Klasse stehen.

Garbage Collection

Mit dem GC33)(Garbage Collection) soll dem Problem der Speicherlöcher der Garaus gemacht werden.
Vor allem in C++ Programmen konnte, auch dem aufmerksamsten Programmierer entgehen, dass
benutzter Speicher nicht mehr freigegeben wurde. Daraus resultierte oft Programmabstürze oder
„eingefrohrene“ Programme.

In .NET ist dank dem GC34)(Garbage Collector) der Unterschied zwischen dem Arbeiten mt Werttypen
und Referenztypen sehr klein geworden. Für den Programmierer macht sich der Unterschied
normalerweise nur dadurch bemerkbar, dass Referenztypen mit new angelegt werden müssen,
Wertetypen jedoch nicht. Eine Ausnahmen ist die Klasse String, weil davon Objekte ohne new
angelegt werden können.

2026/01/18 02:39 31/48 Übersicht und Versionen

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Standard-Datentypen von C#

Alle Standard-Datentypen in C# sind Objekte, d.h. sie sind wie alle anderen Objekte direkt oder
indirekt von System.Object abgeleitet. System.Object ist damit die Ur-Klasse aller Objekte in .NET.

Alias Grösse Bereich Datentyp
Sbyte 8 Bit -128 bis +127 System.Sbyte
byte 8 Bit 0 bis 255 System.Byte
char 16 Bit Nimmt ein 16 Bit Unicode Zeichen auf System.Char
short 16 Bit -32768 bis +32767 System.Int16
ushort 16 Bit 0 bis 65535 System.UInt16
int 32 Bit -2´147´483´648 bis 2´147´483´647 Systemint32
Uint 32 Bit 0 bis 4´294´967´295 System.Uint32

long 64 Bit -9´223´372´036´854´775´808 bis
9´223´372´036´854´775´807 System-Int64

ulong 64 Bit 0 bis 18´446´744´073´709´551´615 System.Uint64

float 32 bit +-1.5*10 hoch -45 bis +-3.4*10 hoch 38 7 Stellen
genau System.Single

double 64 Bit +-5.0*10 hoch 324 bis 1.7*10 hoch 308 15 Stellen
genau System.Double

decimal 128 Bit 1.0*10 hoch -28 bis 7.9*10 hoch 28 für Beträge System.Decomal
bool 1 Bit true und false System.Boolean

string unbestimmt Nur begrenzt druch Speicherplatz, für Unicode
Zeichen System.String

… unbestimt Beliebige Grösse (ab .NET 4.0) System.Numerics.Biginteger
… 256 Bit Komplexe Zahlen (Das Monster) System.Numerics.Complex

Nützlich sind die Datenformate DateTime und TimeSpan. Es handelt sich um Klassen die jedoch
Typen repräsentieren die oft benötigt werden.

Die Klasse System.Numerics.BigInteger ist ein Wertety und unterstützung alle gewöhnlichen
Integeroperationen, inklusive Bitmanipulation. Ein BigInteger kann beliebig grosse ganzzahlige Werte
annehmen. Seine Grösse ist nur durch den Speicher begrenzt.

BigInteger bigValue = BigInteger.Parse("987398347598743985797394857");

Die Klasse System.Numerics.Complex erlaubt die Arbeit mit komplexen Zahlen. Die Initialisierung
erfogt durch Übergabe von Real- und Imaginärwert.

Complex z1 = new Complex(12, 16);1.
Complex z2 = Complex.FromPolarCoordinates(10, .524);2.
Complex z3 = z1 + z2;3.

Methoden von Datentypen

Weil wie erwähnt alle C#-Standardtypen Objekte sind, enthalten sie auch Methoden und Felder. Dabei

Last
update:
2018/10/03
13:58

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567909

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:39

handelt es sich einerseits um die Members, die von Objekt ererbt worden sind, andererseits um
typspezifische Methoden.

Suchen Sie in der Hilfe alle Members von Int32.

Type und typeof()

Zu den Eigenschaften einer typensicheren Sprache wie C# gehören auch, dass man zu jedem
Zeitpunkt herausfinden kann, welchen Datentyp eine Variable hat oder von welcher Klasse sie
abgeleitet ist.

Der Operator typeof wird wie eine Methode eingesetzt, ist jedoch ein Schlüsselwort der Sprache C#.
Er liefert beim Aufruf einen Wert vom Typ Type, mit dessen Hilfe über Membervariablen vielerlei
Informationen über den Typ der entsprechenden Variablen ermittelt werden können.

Viele dieser Informationen werden vor allem für die Erstellung von Programmiertools eingesetzt.
Meistens kennt man während der Programmierung den verwendeten Datentyp; eine doch recht häufig
vorkommende Ausnahme klnnte die Ermittlung des Datentyps von Eingaben sein, wie in folgendem
Beispiel dargestellt.

using System1.
 2.
classTestClass3.
{4.
 public static void Main()5.
 {6.
 int x = 200;7.
 Type t = typeof(Int32);8.
 9.
 if(t.equal(x.GetType())10.
 {11.
 Console.WriteLine("x ist vom Type Int32.");12.
 }13.
 else14.
 {15.
 Console.WriteLine("x ist nicht vom Typ Int32.");16.
 }17.
 }18.
}19.

Die Ausgabe nach einem Lauf ist dann:

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:uebungen.png

2026/01/18 02:39 33/48 Übersicht und Versionen

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

x ist vom Typ Int32.

Typkonvertierung

.NET ist sehr typsicher. Die Typsicherheit einer Sprache hat den grossen Vorteil, dass Fehler, die das
Arbeiten mit Datentypen betrefen, in den meisten Fällen schon zur Kompilierzeit und nicht erst
während der Laufzeit in Erscheinung treten. Um in einem Programm ganz gezielt Typkonvertierung
durchzuführen, stellt C# zwei verschiedene Konvertierungsarten zur Verfügung:

Implizite
Konvertierung35)

Beispiel: Bei der Zuweisung einer Variable vom Typ byte (notabene einer
initialisierten) an eine int- Variable wird eine automatisch (oder eben
implizite) Typkonvertierung durchgeführt.

int i;1.
byte b = 100;2.
i = b; // implizite Konvertierung von byte in int. byte -> int3.

Eine implizite Konvertierung36) wird nur dann durchgeführt, wenn bei der Konvertierung in keinem Fall
ein Fehler entstehen kann. Im obigen Beispiel ist sichergestellt, dass ein byte immer in einem int Platz
hat. Anderst ausgedrück kann man sagen dass die Zahlenmenge von byte kleiner ist als die
Zahlenmenge von Integer.

Explizite
Konvertierung37)

Auch als Casting oder im speziellen Fall Typcasting, bezeichnet. Die explizite
Konvertierung38) müssen Sie immer dann einsetzen, wenn der Zieldatentyp
kleiner ist als der Stammdatentyp. Bei einer expliziten Konvertierung sind Sie
als Programmierer dafür verantwortlich, dass die Konvertierung erfolgreich
durchgeführt werden kann. Der gewünschte Datentyp wird in Klammer vor
den zu konvertierenden Wert oder Ausdruck gesetzt.

Das obige Beispiel wird umgedreht:

int i = 100;1.
byte b;2.
b = (byte)i; // explizite Konvertierung von byte in int. Error bei i >3.
255!

Wenn der Wert von i jetzt 400 statt 100 beträgt, wird die Konvertierung trotzdem ausgeführt. Der
Bereich des Werts 400, der im Dualsystem nicht in einem byte Typ Platz hat, abgeschnitten
(Überlauf). Das wohl kaum erwartete Ergebnis in diesem Fall ist 144 für b. Vom Compiler wird kein
Fehler gemeldet. Denken Sie an Ihre Verantwortung!

In C# haben Sie eine Möglcihkeit, solche Fehler bei expliziter Konvertierung zu erkennen und
entsprechend zu behandeln. Das Schlüsselwort hierzu heisst checked:

Ein Beispiel wie checked eingesetzt werden kann:

using System;1.

Last
update:
2018/10/03
13:58

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567909

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:39

 2.
public class Beispiel3.
{4.
 public static void Main()5.
 {6.
 int source = Convert.ToInt32(Console.ReadLine());7.
 byte target;8.
 checked9.
 {10.
 target = (byte)(source);11.
 Console.WriteLine("Wert: {0}", target);12.
 }13.
 }14.
}15.

Die Konvertierung wird nun innerhalb des checked-Blocks überwacht. Sollte sie fehlschlagen, wird
eine Exception ausgelöst (hier eine System.OverflowException), die Sie abfangen können. Wie das
geht, werden wir im Kapitel: Strukturierte Fehlerbehandlung. Hier so viel: Explizite Konvertierung
können und sollen auch, wenn notwendig, überwacht werden.

Die Überwachung wirkt sich nicht auf Methoden aus, die aus dem checked-Block heraus
aufgerufen werden.

Das as-Operator

Das as-Operator ist eine Alternative zur expliziten Konvertierung mit dem Zieltyp in Klammern. Diese
Variante ist sogar in vielen Fällen zu bevorzugen. Ein Beispiel soll den Einsatz verdeutlichen.

object obj = Factory.GetObject();1.
MyType t = obj as MyType; // Achtung nur mit Referenztypen möglich2.
if (t != null) // ...und damit auf null prüfbar3.
{4.
 // arbeite mit t, es ist ein MyType.5.
}6.
Else7.
{8.
 // Typkonvertierung nicht erfolgreich.9.
}10.

Im Unterschied zum cast-Operator wirft diese Art der Konversion keine Exceptions, sondern dem
Zielobjekt wird eine null-Referenz zugewiesen, wenn die Konversion fehlschlägt. Zudem arbeitet der
as-Operator nicht mit Werttypen. Auf diese Weise kann während der Laufzeit überprüft werden ob

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:hinweis.png

2026/01/18 02:39 35/48 Übersicht und Versionen

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

eine Umwandlung erfolgreich war. Typische Anwendung könnte eine Überprüfung bei einer Eingaben
sein, bei der geprüft werden soll, ob eine z.B. rein Char oder String Eingabe erfolgt ist und somit keine
Zahlen eingegeben wurden.

Der is-Operator

Mit dem is-Operator lässt sich überprüfen ob eine Variable oder Objekt von einem gewünschten Type
oder Klasse ist. Folgendes Beispiel soll das verdeutlichen.

class Class1 {}1.
class Class2 {}2.
class Class3 : Class2 {} // Ableitung von class23.
 4.
class IsTest5.
{6.
 static void Test(object obj)7.
 {8.
 Class1 a;9.
 Class2 b;10.
 11.
 if(obj is Class1)12.
 {13.
 Console.WriteLine("obj is Class1");14.
 a = (Class1)obj;15.
 // Do something with "a"16.
 }17.
 else if (obj is Class2)18.
 {19.
 Console.WriteLine("obj is Class2")20.
 b = (Class2)obj;21.
 // Do something with "b"22.
 }23.
 else24.
 {25.
 Console.WriteLine("obj is neither Class1 nor Class2");26.
 }27.
 }28.
 // Main Programm29.
 static void Main()30.
 {31.
 Class1 c1 = new Class1();32.
 Class1 c2 = new Class2();33.
 Class1 c3 = new Class3();34.
 Test(c1);35.
 Test(c2);36.
 Test(c3);37.
 Test("a string");38.
 }39.
}40.

Last
update:
2018/10/03
13:58

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567909

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:39

/* Ausgabe auf der Console41.
obj is Class142.
obj is Class243.
obj is Class2 -> Beachte hier wird auf die abgeleitete Klasse (Basis-44.
Klasse) verwiesen.
*/45.

Zeilennummer Erklährung
1 Definition der Klasse Class1.
2 Definition der Klasse Class2.
3 Definition der Klasse Class3 die von Class2 ableitet.
4 …
5 Klasse IsTest mit der…
6 …

7 …mit der statischen Methoden Test() wird deklariert. Die Mehtode Test() erwartet
ein Parameter vom Type object.

8 …
9 Eine lokale Variable a vom Typ Class1 und…

10 …eine lokale Variable b vom Type Class2 wird erstellt. Diese sind noch null und
haben keine Referenz auf ein Objekt.

11 …
12 Überprüfen ob die Methoden Variable o vom Typ Class1 ist.
13 …
14 Einen Text ausgeben.
15 Typcasting. Hier wird die Variable a einen Typecast-Zeiger vom Objekt o übergeben.
16 …
17 …
18 Überprüfen ob die Methoden Variable o vom Typ Class2 ist.
19 …
20 Einen Text ausgeben.
21 Typcasting. Hier wird die Variable b einen Typecast-Zeiger vom Objekt o übergeben.
22 …
23 …
24 Wenn der Parameter o kein Typ Class1 oder Class2 ist.
25 …
26 Einen Text ausgeben.
27 …
28 Ende der Methode Test().
29 …

30 Haupt-Window-Methode oder Einstiegs Methode von Windows. Es werden keine
Parameter übergeben.

31 …
32 Ein Objekt c1 vom Type Class1 (Konstruktor) erstellen.
33 Ein Objekt c1 vom Type Class2 (Konstruktor) erstellen.
34 Ein Objekt c1 vom Type Class3 (Konstruktor) erstellen.
35 Die statischen Methode Test()…

2026/01/18 02:39 37/48 Übersicht und Versionen

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Zeilennummer Erklährung
36 …mit übergabe verschiedener Objekte…
37 …aufrufen.
38 Die statische Methode Test() mit einem Objekt vom Typ String aufrufen.
39 …
40 Ende des Programms
41 …

42 Ausgabe zeigt die Ausgabe vom Methodenaufruf von Zeile 35. Der Objekttyp Class1
wurde erkannt.

43 Ausgabe zeigt die Ausgabe vom Methodenaufruf von Zeile 36. Der Objekttyp Class2
wurde erkannt.

44 Ausgabe zeigt die Ausgabe vom Methodenaufruf von Zeile 37. Der Objekttyp Class2
wurde erkannt! Achtung, Class3 leitet von Class2 ab und ist somit vom Typ Class2.

45
Ausgabe zeigt die Ausgabe vom Methodenaufruf von Zeile 38. Da der übergebener
Parameter eine Referenz auf ein Objekt vom Typ String beinhaltet und somit weder
vom Typ Class1 noch vom Typ Class2 ist, ist kein Statemend (Zeile 12, 18) gültig
und das Programm verzweigt zu Zeile 24.

Umwandlungsmethoden

Für die Umwandlung von Type ist die Klasse System.Convert zuständig. Sie bietet folgende
Umwandlungsfunktionen an:

ToBoolean() ToInt32()
ToByte() ToInt64()
ToChar() ToSByte()
ToDateTime() ToSingle()
ToBoolean() ToString()
ToDate() ToUInt16()
ToDecimal() ToUInt32()
ToDouble() ToUInt64()
ToInt16() .

Die Umwandlung eines Strings in einen anderen Zahlendatentyp, z.B. int doer double, funktioniert
auch über die von den numerischen Typen zur Verfügung gestellte Methode Parse() bzw. TryParse()
(ab .NET 2.0). Diese Mehtoden existieren in Form von mehreren überladenen Methoden und erledigen
die Umwandlung von Strings in die gewünschte numerischen Typen.

Ein Vorteil von Parse() ist, dass zusätzich angegeben werden kann, wie die Zahlen formatiert sind
bzw. in welches Format sie vorliegen. Ausserdem interpretiert die Methode auch die
länderspezifischen Einstellungen des Betriebssystems.

Die Methode Parse() gibt false zurück, wenn die Konvertierung fehlschlägt und wirft KEINE
Exceptions.

Boxing und Unboxing

Wertetypen können bei Bedarf automatisch in Referenztypen verwandelt werden. Damit das sauber

Last
update:
2018/10/03
13:58

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567909

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:39

funktioniert, stellt C# die Funktionalität Boxing und Unboxing zur Verfügung.

Boxing (Objekt vom Stack zum
Heap verschieben und eine
Referenz auf das Objekt legen.)

Wenn ein Wertetyp als Referenztyp verwendet werden soll,
werden die enthaltenen Daten „verpackt“. C# benutzt dafür den
Datentyp object, der bekanntlich die Basisklasse aller Datentypen
darstellt, das bedeutet auch: jeder Datentyp aufnehmen kann.
Object merkt sich, welcher Art von Daten in ihm gespeichert wurde,
damit auch die Rückwndlung möglich ist.

Unboxing (Objekt vom Heap
zum Stack verschieben.) Ein Referenztyp wird in einen Wertetyp verwandelt.

Using System;1.
 2.
public class TestClass3.
{4.
 public static void Main()5.
 {6.
 int i=100;7.
 object obj;8.
 obj=i; // Boxing!!9.
 Console.WriteLine("Wert ist {0}." obj);10.
 }11.
}12.

Ausgabe:

Wert ist 100

Ein Beispiel für Unboxing:

using System;1.
 2.
public class TestClass3.
{4.
 public static void Main()5.
 {6.
 int i=100;7.
 object obj;8.
 obj=i; // Boxing !!9.
 Console.WriteLine("Wert ist {0}.", obj);10.
 11.
 // Rückkonvertierung12.
 byte b=(byte)((int)obj); // Unboxing funktioniert!!13.
 Console.WriteLine("Byte-Werte: {0}.", b);14.
 }15.
}16.

2026/01/18 02:39 39/48 Übersicht und Versionen

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Ausgabe:

Werte ist 100.
Byte-Wert : 100.

Damit ist auch bewiesen, dass sich das Objekt merkt, was für ein Typ es gespeichert hat, deshalb ist
bei Umboxing erst ein Casting zu int nötig.

Normalerweise üblassen Sie Boxing und Unboxing dem Compiler. Es soll aber nach Möglichkeit
vermieden werden, da es einen nicht unerheblichen Laufzeitaufwand generiert.

Strings

Der Datentyp String ist universell einsetzbar.

Obwohl die Dekleration wie bei einem Wertetyp aussieht, handelt es sich bei einem string um einen
Referenztypen.

Ein String ist bezüglich der Grösse dynamisch. Das heisst, er nimmt sich vom Heap so viel Speicher,
wie er gerade braucht. Strings in .NET sind immer Unicode, d.h. 16Bit gross. Mit Hilfe der
2^15(65535) darstellbaren Zeichen können alle Zeichen dieser Welt und einige Sonnderzeichen
dargestellt werden. Wenn man es genau betrachtet, ist sogar noch ca. 1/3 Reserve verfügbar.

Stringzuweisungen

Direkte Zuweisung:

string myString = "Hallo Welt"; // Zuweise bei der Deklaration oder...1.
 2.
string myString3.
myString="Hallo Welt"; //... nach der Deklaration.4.

Zuweisen über die Copy()-Methode:

string myString1 = "JMZ Solution";1.
string myString2 = String.Copy(myString1);// Inhalt von myString1 wird2.
nach myString2 kopiert

oder über die Verwendung des Teilstring Befehls Substring():

string myString1 = "JMZ Solution";1.
string myString2 = myString1.Substring(6);2.

Zuweisung mit Hilfe von Escape-Sequenzen:

Last
update:
2018/10/03
13:58

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567909

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:39

string myString = "Dieser Text hat \"Ausführungszeichen\".";1.

Die Ausgabe wäre hier:

Dieser Text hat "Ausführungszeichen".

Manchmal möchte man die Bearbeitung von Escape-Sequenzen auch unterbinden. Typischerweise bei
der Behandlung von Pfadangaben. Um den Backshlash „\“, der ja auch die Position einer Escape-
Sequenz angibt, in einem String zu schreiben, müsste man wie folgt formulieren:

string myString = "d:\\meinlaufwerk\\ordner\\datei.doc";1.

Bei der Eingabe von „@“ vor dem String wird die Bearbeitung von Escape-Sequenzen im
nachfolgenden String verhindert:

string myString = @"d:\meinlaufwerk\ordner\datei.doc";1.

Zugriff auf String

Ein Beispiel:

using System;1.
class TestClass2.
{3.
 public static void Main()4.
 {5.
 string myStr = "Hallo Welt.";6.
 string xStr = string.Empty;7.
 8.
 for(int i=0; i<myStr.Length; i++)9.
 {10.
 string x = myStr[i].ToString();11.
 if(x != "e")12.
 xStr += x;13.
 }14.
 15.
 Console.WriteLine(xStr);16.
 }17.
}18.

Wir sehen in diesem Beispiel, wie auch Operatoren, hier +=, auf Strings angewendet werden können.

2026/01/18 02:39 41/48 Übersicht und Versionen

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Thema Typensicherheit: string und char können nicht gemischt werden, obwohl es sich bei
einem string um eine Aneinanderkettung von chars handelt.

Strings sind nicht veränderbar (immutable). Das bedeutet, dass bei jeder Stringfunktion ein neues
Objekt angelegt wird. Sogar ein Leerstring „„ ist ein eigenes Objekt. Aus gründen der Performance
soll deshalb für Leerstrings das vordefinierte Objekt string.Empty aus der Klasse string verwendet
werden. Häufig muss geprüft werden, ob ein String null oder leer ist. Dazu stehen die Methoden
IsNullOrEmpty zu Verfügung:

if (!string.IsNullOrEmpty(myStr))1.
...2.

.NET 4 hat eine weitere Methode mit demselben Zweck:

if (!string.IsNullOrWhitespace(myStr))1.
...2.

Studieren Sie in der Online-Hilfe die Methoden, die string zur Verfügung stellt.

Formatierung von Daten

Standardformate

Selbstdefinierte Formate

Ausrichtung

Zusammenfassung

Übungen Datenverwaltung

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:hinweis.png
https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:uebungen.png

Last
update:
2018/10/03
13:58

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567909

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:39

Ablaufsteuerung

Worum geht es?

Was lernen Sie über dieses Kapitel?

Absolute Sprünge

Bedingungen und Verzweigungen

Vergleichs- und logische Operatoren

Die bedingte Zuwweisung

Die for-Schleife

Die while-Schleife

Die do-while-Schleife

Zusammenfassung

Kontrollfragen

Übungen Programmablauf

Operatoren

Worum geht es?

2026/01/18 02:39 43/48 Übersicht und Versionen

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Was lernen Sie in desem Kapitel

Mathematische Operatoren

Grundrechnenarten

Zusammengesetzte Rechenoperatoren

Die Klasse Math

Zusammenfassung

Kontrollfragen

Erweiterte Datentypen

Worum geht es?

Was lernen Sie in diesem Kapitel?

Array

Eindimensionale Arrays

Mehrdimensionale Arrays

Ungleichförmige Arrays

Arrays initialsieren

Die foreach-Schleife

Last
update:
2018/10/03
13:58

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567909

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:39

Struct

Aufzählungen

Standard-Aufzählungen

Flag Enums

Zusammenfassung

Kontrollfragen

Übungen Array

Vererbung und Interfaces

Worum geht es?

Was lernen Sie in diesem Kapitel

Vererbung von Klassen

Zugriff auf Elemente der Basisklasse

Überschreiben von Methonden

Aufruf des Konstruktors der Basisklasse

Abstrakte Klassen

Versiegelte Klassen

2026/01/18 02:39 45/48 Übersicht und Versionen

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Verbergen von Methoden

Interface

Explizite Interfaces

Zusammenfassung

Kontrollfragen

Übungen

Eigenschaften und Indexer

Worum geht es?

Was lernen Sie in diesem Kapitel?

Eigenschaften (Properties)

Erweiterungen der Properties

Indexer

Zusammenfassung

Kontrollfragen

Übungen

Last
update:
2018/10/03
13:58

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567909

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:39

Strukturierte Fehlerbehandlung

Worum geht es?

Was lernen Sie in diesem Kapitel?

Was sind Exceptions?

Exception abfangen

Exception auslösen

Anwendungstipps

Zusammenfassen

Kontrollfragen

Anhang

Erweiterung C#

Initialisierer für Auto-Properties, read-only Auto-Properties

Verwendung statischer Klassen

Exception Filter

Null-conditional-Operator

Expression bodied Member

2026/01/18 02:39 47/48 Übersicht und Versionen

Bücher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Initialisierung von Collections

String Interpolation

nameof Operator

Literatur

Fussnoten

Paar Link zum Start:

Threading in C#

Albahari.com

Microsoft Dev Center -> XAML in WPF

WPF Architektur & Programmbeispiele

1) , 7) , 22)

Common Language Runtime
2)

1980 Microsoft Disk Operating System
3)

1985 Windows 1.0
4)

1990 Windows 3.0
5)

1995 Windows 95
6)

Crossplatform Mono, Mobile, Linux
8)

Reference Counting für Objekte
9) , 28) , 29) , 30) , 31) , 32) , 33)

Garbage Collection
10)

Active Data Objects
11)

Extensible Markup Language
12)

Input Output
13)

Active Server Pages
14)

Simple Object Access Protocol
15)

ASP.NET Application Services

http://www.albahari.com/threading/part3.aspx
http://www.albahari.com
https://code.msdn.microsoft.com/windowsapps/site/search?f%5B0%5D.Type=Technology&f%5B0%5D.Value=XAML
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/wpf-architecture
https://en.wikipedia.org/wiki/MS-DOS
https://en.wikipedia.org/wiki/Windows_1.0
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Windows_95
https://www.mono-project.com/
https://en.wikipedia.org/wiki/SOAP
https://en.wikipedia.org/wiki/ASP.NET

Last
update:
2018/10/03
13:58

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567909

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:39

16)

Windows Foundation Class
17)

WPF = Windows Presentation Foundation
18)

Extensible Application Markup Language
19)

Windows Communication Foundation
20)

Service-Oriented Applications/Architecture
21)

Common Intermediate Language
23)

Micro Framework
24)

Mono
25)

Windwos CE
26)

Common Iintermediate Language
27)

Application Programming Interface
34)

Garbage Collector
35) , 36)

Implizite Konvertierung
37) , 38)

Explizite Konvertierung

From:
https://jmz-elektronik.ch/dokuwiki/ - Bücher & Dokumente

Permanent link:
https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567909

Last update: 2018/10/03 13:58

https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/wpf-architecture
https://en.wikipedia.org/wiki/Windows_Communication_Foundation
https://en.wikipedia.org/wiki/Service-oriented_architecture
https://en.wikipedia.org/wiki/.NET_Micro_Framework
https://en.wikipedia.org/wiki/Mono_(software)
https://en.wikipedia.org/wiki/Windows_Embedded_Compact
https://en.wikipedia.org/wiki/Common_Intermediate_Language
https://en.wikipedia.org/wiki/Application_programming_interface
https://jmz-elektronik.ch/dokuwiki/
https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567909

	Inhaltsverzeichnis
	Übersicht und Versionen
	Erklärungen zu den Symbolen

	Einführung
	Kurzübersicht
	Ihr Nutzen
	Zielpublikum
	Voraussetzung

	C# und .NET
	Worum geht es?
	Was lernen Sie in diesem Kapitel?
	Was ist .NET?
	Ein neue Welt für .NET
	Ein Beispiel eines CIL Codes
	Die APIs des .NET Standard 2.0

	Erste Schritte im C#
	Worum geht es?
	Was lernen Sie in diesem Kapitel?
	Hello World
	Zusammenfassung
	Kontrollfragen

	Klassen und Objekte
	Worum geht es?
	Was lernen Sie in diesem Kapitel?
	Einführung
	Begriffe
	Deklaration von Klassen
	Erzeugen von Instanzen einer Klasse

	Felder einer Klasse
	Modifikatoren
	Variable und Felder
	this
	Deklaration von Konstanten

	Methoden einer Klasse
	Parameterübergabe
	Optionale Parameter
	Überladen von Methoden

	Statische Methoden / Variablen
	Zugriff auf statische Methoden und Variablen
	Statische Klasse

	Initialisierung
	Konstruktoren
	Destruktoren / Finalizer

	Namensräume
	Verwenden von Namensräumen
	Der globale Namensraum

	Zusammenfassung
	Kontrollfragen
	Übung Klasse und Objekte

	Grundlagen Datentypen
	Worum geht es?
	Was lernen Sie in diesem Kapitel
	Datentypen
	Speicherverwaltung
	Die Null-Referenz
	Nullbare Typen
	Garbage Collection
	Standard-Datentypen von C#
	Methoden von Datentypen
	Type und typeof()

	Typkonvertierung
	Das as-Operator
	Der is-Operator
	Umwandlungsmethoden

	Boxing und Unboxing
	Strings
	Stringzuweisungen
	Zugriff auf String

	Formatierung von Daten
	Standardformate
	Selbstdefinierte Formate
	Ausrichtung

	Zusammenfassung
	Übungen Datenverwaltung

	Ablaufsteuerung
	Worum geht es?
	Was lernen Sie über dieses Kapitel?
	Absolute Sprünge
	Bedingungen und Verzweigungen
	Vergleichs- und logische Operatoren
	Die bedingte Zuwweisung
	Die for-Schleife
	Die while-Schleife
	Die do-while-Schleife

	Zusammenfassung
	Kontrollfragen
	Übungen Programmablauf

	Operatoren
	Worum geht es?
	Was lernen Sie in desem Kapitel
	Mathematische Operatoren
	Grundrechnenarten
	Zusammengesetzte Rechenoperatoren
	Die Klasse Math

	Zusammenfassung
	Kontrollfragen

	Erweiterte Datentypen
	Worum geht es?
	Was lernen Sie in diesem Kapitel?
	Array
	Eindimensionale Arrays
	Mehrdimensionale Arrays
	Ungleichförmige Arrays
	Arrays initialsieren
	Die foreach-Schleife

	Struct
	Aufzählungen
	Standard-Aufzählungen
	Flag Enums

	Zusammenfassung
	Kontrollfragen
	Übungen Array

	Vererbung und Interfaces
	Worum geht es?
	Was lernen Sie in diesem Kapitel
	Vererbung von Klassen
	Zugriff auf Elemente der Basisklasse
	Überschreiben von Methonden
	Aufruf des Konstruktors der Basisklasse
	Abstrakte Klassen
	Versiegelte Klassen
	Verbergen von Methoden

	Interface
	Explizite Interfaces
	Zusammenfassung
	Kontrollfragen
	Übungen

	Eigenschaften und Indexer
	Worum geht es?
	Was lernen Sie in diesem Kapitel?
	Eigenschaften (Properties)
	Erweiterungen der Properties
	Indexer
	Zusammenfassung
	Kontrollfragen
	Übungen

	Strukturierte Fehlerbehandlung
	Worum geht es?
	Was lernen Sie in diesem Kapitel?
	Was sind Exceptions?
	Exception abfangen
	Exception auslösen
	Anwendungstipps
	Zusammenfassen
	Kontrollfragen

	Anhang
	Erweiterung C#
	Initialisierer für Auto-Properties, read-only Auto-Properties
	Verwendung statischer Klassen
	Exception Filter
	Null-conditional-Operator
	Expression bodied Member
	Initialisierung von Collections
	String Interpolation
	nameof Operator

	Literatur

	Fussnoten

