2026/01/18 02:38 1/4 Ubersicht und Versionen

Inhaltsverzeichnis
UDBersicht UNd VEISIONENcocooviviiiiiiciceeeee ettt sttt sttt st 1
Erklarungen zu den SymbBoOIENccccviiiiiiiiiiii 1
EiNFURFUNG ..o e e ettt e e ettt e e e e sttt e e e e e e s nbbb e e e e e s nae 1
KUIPZUDBEISICRTL ...ttt r e e e e e e e e e e e e e e e e e eaeae s bbb as 1
FRE NUTZEN ...ttt e e e e e e bbb e et e e e e e e e e e e e s s e e 2
ZielpUDBLIKUM ...t e e e e e e e e nees 2
VOFQUSSEEZUNG ... e 2
CH UNA INET oottt et e e e e e e e s s s e bbb bbb e e ettt et e e e e e e e e e n e 2
WOrUM GERL @S? ... e 2
Was lernen Sie in diesem Kapitel? ...t 2
WAS QST LINET? ..ottt ettt et e e e e e e e e s e a s s bbb r e e e e e e e e e e e e e e ananns 2
EiN NEUE Welt fUF INET ittt r e e et e e e e e e e s s s s s e bbb be e e e 5
Ein Beispiel @iNES CIL COUEBSciiiiiiiiiiiiiiiiiiiiii st e ettt e e e e e e e e e eeaeaeeeaeeaesenneennes 6
Die APIs des .NET Standard 2.0ccoooiiiiiiiiiiiiiiiiiicn et e e e s a e 7
Erste SCRIitte im G e e e e e e e e e e e e e e e e 7
WOrum geRt @S?oo e e as 7
Was lernen Sie in diesem Kapitel?cccccccccciiiiiiiiiiiiiiii e 7
HEIIO WOIIcoo oottt e e e e e e ettt et e e e e e e e e e s s s e aaebneees 7
ZUSAMMENTASSUNGoviiiiiiiiie et e e e e e e e et e et e e e ettt aaaaaeas 10
KONEIOHIfragencoooouiiiiiiiiiie ettt e e e e s st e e e s e bbb e e e e e ans 10
Klassen UNd ODJEKEE ... e e e e e e 10
WOorum geRt @S?oo e 10
Was lernen Sie in diesem Kapitel?ccooommmiiiiiiiiiii e 11
EiNfURIUNGo oottt e e e e e e e e et e e e et et e e e e e e e e e e e s s s sssneareereeees 11
S TTo] =TT PPP PP PPPTPPPP 11
DeKIaration VON KIQSSEN ..uuuiiiiiiiiiiiii ittt e e e e e e e e e e e e s s areeaaaes 11
Erzeugen von INstanzen einNer KIASSEoouiiiiiiiiiiiiie e e e 11
Felder @iNer KIASSE@cccuuuiiiiiiiiiiiiii ettt e e e e e e e e e e e naaes 13
MOGITIKAEOIBN oo e e e e e e s e e e bbb r e et e e e e e e e e e s s s e e aanbrrees 14
Variable UNA FEIART .o e e e e e e e e e e s s nnes 15
L0 1L USSP P PP UPPPPPRPRPRRRRNS 15
Deklaration von KONSLANTENcoiiiiiiiii e 17
Methoden €INEr KIQSSEccccoiiiiiiiiiiiiiciii e 17
Y T L=] 01T o = o 1= 18
OPLIONAlE ParamEter .o 20
UDEaden VON MELNOGENoviivieeieeeeee et e ettt e et e et e e et et et e et e ea e et e e e s e et ereereeeeereereareans 21
Statische Methoden / Variablenccccccviiiiiii e 22
Zugriff auf statische Methoden und Variablen ... 23
SEAtISCNE KIGSSE wetiiiiiiiiiiiii ittt e e e e e e et a e e e e e e e nn e 24
INGEIAlISI@IUNGooveeeeiiiii et e e e e e e e 24
KONSETUKEOTEN e e e bbbttt et e e e e e e e s e e e n bbb e b b et reeeaeeeeeaas 24
DESTIUKEOrEN / FINGIIZEL ..ottt e e e e e e e e e e e e e e e e s eeseeeeaaaaees 26
NAMENSIAUIME ... et e e e b r e et e e e e e e e e e e e e s s s s bbb bbb e e eees 27
Verwenden VON NamMENSIAUMEN ...uuiiiiiiiieeeeiiisisiiiitissseeseeeeseses s s s s s saabbsssesrttaaeeeeee s s s s s s nsaabbesnnees 27
DL o | [o] o =Y (N \F= T g L= 1] = 1V RS 28
ZUSAMMENTASSUNGoviiiiiiiii e e e e e e e et e e et e e et e et aaaaeas 28
KONEIOHIfragenooooiuiiiiiiiiiie ettt e s e e e s et e e e e s e bbb e e e e e ens 28
Ubung Klasse Und OBJEKLEc.ccccocvcumeivieeiieieeeieeeeeee e 28

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last

5822556/03 start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567828
13:57
Grundlagen DatentyPen ... 29
WOrUum gERL @S?oo i 29
Was lernen Sie in diesem Kapitel ... 29
DAtentyP@N ... 29
] L= [g 1T V2= 1= | LU Lo 29
Die NUI-REFEIENZ ... 30
NUIIDAIE TYPEN ettt e e e e bt e e e e e sk bbbt e e e e asab bbb e e e e e anbbbe e e e e s anbbbneaeesann 30
(O T o T Yo [T @e] | [=Tot o] o H TP P PP PPPPPRPP 30
Standard-Datentypen VON CH ..t 31
Methoden VON DatentyPeN ... e e e e 31
BT =0 LT R Y] o 1= o ISR SSSPPPP 32
TYPKONVEIEIOIUNGcccoiieiiiiiie ettt e et e e e e et e e e e e 33
DS @S-OPEIATON ..ttt r e e e e e e e e e e 34
DT G TSE O] o 1= = o SRR 35
UMmwandiungsSmeEtNOUENiiiiiiiiiiiii e 37
Boxing UNA UNDOXINGooooiiiiiiiiiiiiiiiiiiiiii e a e e e e e e e e e s 37
SEFINGS ... e a e e e e et e 39
SEANQZUWEISUNGEN ..ttt ettt e ettt e e e ettt e e e e e s bbbt e e e e s e sbb b e e e e e e e nbbn e e e e e e annnbneeeas 39
ZUGIff @UF SEIING oo e e e e e e e s e e e e eas 40
Formatierung von Dat@ncoooiiiiiiiii it 41
StANAArdfOrmMate ... e 41
Selbstdefinierte FOrMAate ... 41
AUSTICNEUNG ettt e ettt e e e ettt e e e e s R bbbt e e e e e as b bbbt e e e e s bbb b e e e e e e nnbbbeeeeeeannres 41
ZUSAMMENTASSUNGoooiiiiiiiii ettt e e et e e e e e bbbt e e e e e et bbb e e e e s asbb e e e e e e e nnrneeas 41
Ubungen DatenverWwaltungc.cccocooveveiseieeeesisiieieeeeseess sttt 41
ADBIAUFSTEUEIUNGttt e e e e e e e e e e s s s e bbb e e e e e eeeeees 42
WOrum gEeRE @S?ooo i e 42
Was lernen Sie liber dieses Kapitel?cccccooiiiiiiiiiiiii e 42
ADSOIULE SPIrUNGEoooiiiie et e e 42
Bedingungen und VerzZweigUNQGENcccccuuiiiiiiiiiiiiii ettt 42
Vergleichs- und 10giSChe OPeratorencoocciiiiiiiiiiiiii e 42
Die bedingte ZUWWEISUNG ..oiiiiii e s s e ae s s s s e e e e e e eeeeeeeeeeeeeees 42
DI FOr-SCRIITE ..ot 42
Die WHilE-SCNIEIFE ..t e e e e e e e e e e aaa s 42
Die dO-WhilE-SCRIBITE ..o e e e e e e ar e e e s 42
ZUSAMMENTASSUNGoooiiiiiiiii ettt e et e e e e et e e e e e e e e b b e e e e e e s annrr e e e e e e annrneeas 42
KONTrolIfragenouuiiiiiiiiiiiii et e et e e e e e e e 42
Ubungen Programmablaufc.c.cccocovevieciiiieieeiieeesee et 42
OPEIALOIEN ... ettt e e e e e e st e e e e e e e e e 42
WOrUum geRt @S?oo oo 42
Was lernen Sie in desem Kapitel ... 43
Mathematische OPeratorenccccciiiiiiiiii s 43
GruNdreChNENAITEN ..o s e e 43
Zusammengesetzte ReCheNOPEratoreN ... 43
Di€ KIASSE MatN .iiiiiiii ittt a e e e 43
ZUSAMMENTASSUNGooiiiiiiii ettt e e et e e e e ek b e e e e e e e b e e e e e e s e nnbr e e e e e e nnrreeas 43
KONEIrOolIfragenooooimiiii it e e e e r e e e s s re e e e e an 43
Erweiterte DatentyPen ... 43
WOorum geRt @S? ... 43

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:38

2026/01/18 02:38 3/4 Ubersicht und Versionen

Was lernen Sie in diesem Kapitel? ... 43
AFTAY . e 43
EiNIMENSIONAIE AITAYS woiiiiiiiiiiiii ittt e e e e e e e e s s e s bbbt raeaeaa s 43
MehrdimENSIONAIE AITAYS ...ciiiiiiiiiieiee s e e e e e e e et e e e ettt et b s e s e e e eeeeeeeaeaeeeeeesessennennes 43
UNQIEICNTOIMIGE AIT@YS .iiiiiiiiiiiiiiiiie s s e e e e e e e e e e et et e e ettt s e e e e e e e aeeeaaeaateeeessssssssnsnnnnns 43
ArTayS INIHIAISIEIEN et e e et e e e s r e e e s e a e e e a e a e s 43
Die fOreaCh-SChIBITE ..ot e s e e e e nnees 43
STIUCE ...ttt e e e e e e et e e e e e e e e 44
AUTFZARIUNGEN ...t e e s 44
Standard-AUfZANIUNGEN ..o e e e e e e e e e et e e e 44

[E= o = 0 0 PP PPPPPPPPPPPPP 44
ZUSAMMENTASSUNGoooiiiiiiiiie ettt e ettt e e e e e bbbt e e e e e e bbbt e e e e s anbbr e e e e e e annreees 44
KONEIOHIfragen ...ttt e e e e e s st e e e e e e annrr e e e e e an 44
UBUNGEN AITAY ...ttt ettt 44
Vererbung Und INterfaces ... 44
WOorum geRt @S? ... 44
Was lernen Sie in diesem Kapitelc.ccooiiiiiiiiiiiii s 44
Vererbung von KIASS@Ncc.ooiiiiiiiiiiiie ittt 44
Zugriff auf Elemente der BasiSKIasseccviiiiiiiiiiiiiiiiic i 44
Uberschreiben VON MELNONAENccoeiviviiieiiieciee sttt sttt re st sttt s e b seane s 44
Aufruf des Konstruktors der BasiSKIassecccvviiiiiiiiiiiiiiiii e 44
ADSEIAKEE KIQSSEN ottt e e e e e e e e e e raaaaaaaaaaaaaan 44
VErSiEgelte KIASSEN ..oeii ittt e et e e e e s e e e e e s e b e e e e e e e e e e e nnes 44
Verbergen VON MetNOGEN ... e e s nnr e e e e 45
INEEITACE ... e e e s 45
(3300] [P41 L= [11 (=] g 1= ol =X 45
ZUSAMMENTASSUNGovviiiiiiiiii e e e e e e e e e et e et e et 45
KONEIOIIfragenoooooiiiiiiiiiiee et et e e e s et e e e s e nbbn e e e e e 45
UDUNGEN ...ttt 45
Eigenschaften und INdeXer ... 45
WOrUmM gERE @S?oooi i e 45
Was lernen Sie in diesem Kapitel?ccccorimiiiiiiiiiii e 45
Eigenschaften (Properti@s) ...ttt a e 45
Erweiterungen der Properti€s ..ottt 45
INAE@XEI ...ttt e e e e e e e e s e e e e e e e e e e 45
ZUSAMMENTASSUNG ...ttt e e e e e e e e e e e s bbb bbb e et e e e e e e e e e e e e e e e e 45
KONTrollfragenoooiiiiiiiiiiiiii et e e e e e e e e e e e 45
UBDUNGEN ...ttt ettt 45
Strukturierte Fehlerbehandlung ... 46
WOrum geRt @S?ooo et s 46
Was lernen Sie in diesem Kapitel?ccooommmmiiiiiiiiiiii e 46
Was Sind EXCEPTIONS?ooooemeiiiiiiii it e e e e e e e e e e e e e e e e e e aeeeeraaaaanes 46
EXCeption abfangen ... 46
EXCEPLION QUSIOSENoooiiiiiiiiieee e 46
ANWENAUNGSEIPPS ...t e e e e e e e e 46
ZUSAMMENTASSEI ...ttt e e e e a e e 46
KONTrolIfragenoouiiiiiiiiiiiii et e e e e e e e e e 46
ANRNANG e a e e e e e et et et 46
Erweit@rUNG CHooooiiiiieiiiee ettt ettt e e e e et e e e e et e e e e b e e e e ane e 46
Initialisierer fur Auto-Properties, read-only AUtO-Properties ..o 46

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last

5832556/03 start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567828

13:57

Verwendung statischer KIASSEN ... 46
EXCEPLION FIILOI ettt e e st e e e e et e e e e e s anbb e e e e e s annrreeeas 46
NUI-CONAItIONAI-OPEIALOL ...eeiiiiei i r e e e e sb e e e e e e annbreeaeesanes 46
EXPression Dodied MemMDEr ... 46
Initialisierung von CoIlECLIONS ... e e e 47
SEFNG INTEIPOIALION i e e e 47
NAMEOT OPEIALOT ittt e e e e e s s bt e e e s s bbb et e e e e anbbb et e e e e anbbrreeeaaas 47
LIt@IAtUrcoooi ittt e e e e e e e a e e e 47
FUSSNOTEN ...t a e 47

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:38

2026/01/18 02:38 1/48 Ubersicht und Versionen

Ubersicht und Versionen

e Visual Studio 2017
o NET 4.62
e C#17.0

Erklarungen zu den Symbolen

Lernziele

== |An dieser Stelle werden lhnen die Lernziele des Kapitels erklart. Sie erfahren, was Sie
nach dem Bearbeiten dieses Kapitels Neues anwenden kénnen und was Sie dazulernen.

Hinweis

Wichtiger Hinweise und Warnungen finden Sie neben diesem Symbol.

Tipps & Tricks

Nebst der allgemeinen Bedienung eines Programms gibt es immer wieder praktische
Tipps und Tricks, die mit diesem Symbol fur Sie gekennzeichnet sind.

Ubungen

/ Neben diesem Symbol finden Sie die konkreten Ubungen zum Lernstoff.

Lernzielkontrolle

dienen die Lernzielkontrollen. Auf diese Weise kdnnen Sie das eben Gelernte zu lhrem
personlichen Erfolg vervollstandigen.

6 Zum Schluss jedes Themas gilt es, das Vermittelte miteinander zu Uberprufen - dazu

Einfuhrung

Kurzuibersicht

Zusammen mit dem .NET Framework hat Microsoft die Programmiersprache C# (C-Sharp) entwickelt.
Die Sprache wurde stark an C++ angelehnt, die Sprache Visual Basic und Object Pascal (Delphi)
nahmen ebenfalls Einfluss. Da auch die Sprache Java von C++ abstammt, sind viele Ideen und
Konzepte gemeinsam. Nlchtern betrachtet, ist C# eine Weiterentwicklung von Java. Viele C#-
Konzepte sind inzwischen auch zu Java zurickgeflossen.

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:lernziele.png
https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:hinweis.png
https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:tipps_tricks.png
https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:uebungen.png
https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:lernzielkontrolle.png

Last
update:
2018/10/03
13:57

lhr Nutzen

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567828

Lernen Sie elementaren Bestandteile der Programmiersprache C# kennen, kdnnen eigene Programme
damit entwerfen, erstellen und warten. Nach diesem Kurs haben Sie alle erforderlichen Grundlagen,
um sich in fortgeschrittene Themen von .NET einzuarbeiten.

Zielpublikum

Softwareentwickler, die von einer Sprache wie C++, Delphi, Smaltalk, Java oder einer anderen
objektorientierten Sprache herkommen, sich fur die Programmierung der .NET-Plattform optimale
Voraussetzungen erarbeiten mochten.

Voraussetzung

Guten Kenntnisse der Programmiersprachen C++, Delphi, Smaltalk oder Java oder sehr gute
Kenntnisse in C oder Visual Basic.

C# und .NET

Worum geht es?

NET ist die aktuelle Entwicklungsplattform fur Windows- bzw. Internet-Applikationen von Microsoft.

Was lernen Sie in diesem Kapitel?

Sie erhalten in diesenm Kapitel einen groben Uberblick Uber die Bedeutung von .NET. Sie kennen die
Hauptelemente, die .NET ausmachen, und kennen die funktionellen Bestandteile der CLR” (Common
Language Runtime).

Was ist .NET?

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:38

2026/01/18 02:38 3/48 Ubersicht und Versionen

.NET ist das dritte, komplett neue
Entwicklungsmodel in der Microsoft-
Geschichte.

Task Parallel

0'€E

0°Z MHomawely [IN’

1980 DOS”

1985 Windows 1.0”
1990 Windows 3.0
1995 Windows 95
2002 .NET 1.0
2003 .NET 1.1
2005 .NET 2.0
2006 .NET 3.0
2007 .NET 3.5
2010 .NET 4.0
2012 .NET 4.5
2015 .NET 4.6
2017 .NET 4.62

Die Entwicklung fur .NET begann im Jahre 1998. Die Funktionen von .NET wurden kontinuierlich
weiterentwickelt. Seit 2017 ist die Entwicklung von Programmen unterschiedliche Betriebsysteme
maoglich.

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:dotnet_module.png

Last

;8?2}?6/03 start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567828

13:57

C++.NET Other

Common Language Specification '

Framework Class Library

ASP.NET
Web Services Web Forms

Windows Forms
Controls Drawing

ASP.NET Application Services

Windows Application Services

ADO.NET XML Threading 10

Network Security Diagnostics Etc.

Lommon .-:i'i'J! ge KUuntim
Operating System I

Begriff Bedeutung
CLR? Common Language Runtime. Herzstick des .NET Framework. Ist die
Laufzeitumgebung furdie .NET-Applikationen.
Memor in diesem Teil wird die gesamte Speicherverwaltung erledigt. Teil des Memory
M y Management sind: Anlegen und Verwalten des Speichers, ROC® Reference
anagement

Counting fiir Objekte, GC” Garbage Collection

Das gemeinsame Typen-System ermdglicht die Entwicklung und einfache
Interaktion zwischen Programmen, die mit unterschiedlichen

Common Type

System Programmiersprachen erstellt worden sind.
L|fegyclg Uberwacht die Systemeinheiten wie Programmen, Ressourcen, Objekten usw.
Monitoring

.NET Framework

Basisklassen von .NET.
Base Classes

Active Data Objects. Eine Gruppe von Klassen, die Datenzugriffsdienste (z.B.

ADO.NET™ auf Datenbanken) zur Verfligung stellt.

XML Extensi.ble Markup Language. Datenbeschreibungssprgche, die in .NET fur die
Beschreibung und den Austausch von Daten verwendet wird.

Threading Klassen, um Multithreading-Applikationen zu ermaglichen.

102 *Inpqt Output’f. Gruppe von Klassen, die Ein- und Ausdgaben unterstitzen (z.B.
Dateien schreiben und lesen.

Net Implementation der gagngigen Netzwerkprotokolle wei TCP/IP.

Diagnostics Klassen fur das Tracen und Debugen von Applikationen.

https://jmz-elektronik.ch/dokuwiki/

Printed on 2026/01/18 02:38

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:dotnet_framework.jpg

2026/01/18 02:38

5/48 Ubersicht und Versionen

Begriff

Bedeutung

ASP.NET*

Active Server Pages. Basis fur die Implementierung von Internet-
Anwendungen.

Web Services

Stellen Mechanismen zur Verfligung, um Uber das Internet mittels SOAP**
(Simple Object Access Protocol) zu kommunizieren. Mit WEB-Services kénnen
programmierbare Business-Logic-Komponenten auf Webservern zur Verfligung
gestellt werden, die von ASP.NET Clients transparent (soll heissen unabhangig
von ihrem physikalischen Standpunkt) genutzt werden kdnnen.

Web Form Umgebung, um eine Web-oberflache zu erzeugen.
ASP.NET

Application Services zu Erstellung von ASP.NET-Applikationen.
Services"

Windows Forms

Plattform zur Erstellung von WIN32-Desktop-Applikationen. Basierent auf der fur
J++ entwickelten WCF™,

Windows Presentation Foundation. Eine Plattform zur Erstellung von

WPF'” Desktop-Applikationen die auf dem neuen XAML'-Deklaration basiert.
C Eingestandige, grafische Einheit mit Funktionalitat fur die Erstellung und
ontrols : "
Erweiterung Oberflachen.
Drawing Zeichfunktionalitat.
Windows
Application Services zur Erstellung von Windows-Forms-Applikationen.
Services
WCE™ Windows Communication Foundation. Entwicklungsklassen und Basis zur

Entwicklung SOA*”(service-oriented applications)

Ein neue Welt fiir .NET

Die .NET Programme basieren auf mehreren .NET Standards und Tools auf.

graph TB subgraph .NET Framework A[Windows Applications] end subgraph .NET Core B[Cross-
Platform Services] end subgraph Xamarin C[Mobile Applications] end A-->NET B-->NET C-->NET
subgraph Unified Platform NET(.NET Standard Library) end subgraph Common Infrastructure
X(Compilers) Y(Language) Z(Runtime Components) NET-->X NET-->Y NET-->Z end subgraph Tools
U(Visual Studio Windows) V(Visual Studio MAC) W(Visual Studio Code) U-.-V V-.-W end

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last

update: start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567828

2018/10/03
13:57
Der Herstellungsprozess einer
Applikation gestaltet sich einfach. Jeder
C# VB.NET Jit Quellcode wird in eine einheitliche
code code code . 21)
Zwischensprache CIL*” (Common
Intermediate Language) Ubersetzt.
N
Compiler Compiler Compiler

— | —

-- Common Language Infrastructure

"

HET compatible languages compie o a
sacond platform-neutral language called
Commaon Intermediate Language (CIL)

l

Common
Language
Runtime

)

01001100101011
11010101100110

The platform-spacific Common Langudage
Runtime (CLR) compiles CIL o machine-
ripdable code thal can be execuled on the
curreni platiorm

Dabei spielt es keine Rolle ob Ihr Programm in C#, Visual Baisc, J#, F# geschrieben wurde. Alle
werden in den identischen in CIL-Code Ubersetzt. Dieser CIL-Code ist nicht geschutzt und kann von
jedermann eingesehen werden.

Die betriebsystemabh&ngige CLR*? (Common Language Runtime) iberstetzt den CIL-Code zu Laufzeig
in den jeweiligen Maschinencode. Die CLR stellt somit die Verbindung zum Betriebsystem und zur
CPU-Code her.

Wie flexibel diese CLR ist zeigt sich an den Beispielen .NET Micro Framework*”, Mono””, Windows
CE™.

Ein Beispiel eines CIL Codes

Diese Beispiel einer Console-Anwendung zeigt eine Meldung: ,Hallo World“ an und ist direkt in CIL*®

geschrieben. Damit entfallt die Ubersetzung aus der Hochsprache wie C#.

.assembly Hello
.assembly extern mscorlib
.method static void Main

.entrypoint
.maxstack 1

SOk, WN =

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:38

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:overview_of_the_common_language_infrastructure.png

2026/01/18 02:38 7/48 Ubersicht und Versionen

7. ldstr "Hello, world!"

8. call void [mscorlib|System.Console: :WritelLine(string
9. ret

10.

Die APIs des .NET Standard 2.0

Die API”” (Application Programming Interface) des .NET Standard 2.0 beinhaltet folgende
Programmierschnittstellen bzw Klassen:

Technologie Klassen & Schnittstellen

XML XLing, XML Document, XPath, Schema XSL
Serialization|BinaryFormatter, Data Contract XML
Networking |Sockets, Http, Mail, WebSockets

10 Files, Compression, MMF
Threading |[Threads, Thread Pool, Tasks
Core Primitives, Collections, Reflection, Interop, Ling

Erste Schritte im C#

Worum geht es?

Wir erstellen unser erstes C#-Programm und diskutieren das Ergebnis.

Was lernen Sie in diesem Kapitel?

l Sie benutzen Visual Studio 2017, um ein ,Hello World“-Programm in C# zu schreiben und Sie
verstehen dessen wesendlichen Elemente. Blocke, Kommentare, Main(), Methode,
Namensraume (Namespaces), Hilfsysteme der Visual Studio .NET.

Hello World

Wahlen Sie im Startfenster [Create New Project] oder wahlen Sie unter [File]=[New Project], um
ein neues C#-Projekt zu erzeugen.

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:lernziele.png

Last
update:
2018/10/03
13:57

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567828

__ Sie konnen ein neues Projekt auf der
e e e e e o " - i /Startseite von Visual Studio 2017

. 3 - =W,

T S ———— T STEl N,
LN | 3

-

o e

e e e e e “ =" | Alternativ kénnen Sie auch Uber das
'M—T_*Menu (wie oben beschirieben) erstellen.
) . #7“Jwahlen Sie wie auf dem Bild ersichtlich,
: b o als Projekttyp eine Windows-
_ ; [Konsoleanwendung aus. Geben Sie
e anschliessend folgenden C#-Code ein.
—— :

ERE3dAR

1. namespace HelloWorld

2.

3. using System

4.

5. /// <summary>

6. /// Beschreibung der Klasse Programm

7. /// </summary>

8. public class Program

9.

10. public static int Main(string|| args
11.

12. System.Console.WriteLine("HellowWorld"
13. System.Console.Read

14, 0

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:38

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:neues_projekt_erstellen_a.jpg
https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:neues_projekt_erstellen_b.jpg

2026/01/18 02:38 9/48 Ubersicht und Versionen
15.
16.
17.

Code Beschreibung

namespace HelloWorld

Defniert den Namensraum HelloWorld. Hilft beim
Organisieren von Codeteilen und ermdéglicht systemweite
eindeutige Namen. Der Namensraum ist hyrarchisch
aufgebaut und kann beliebig tief sein.

{..}

Begrenzt von Programmblocken. Blocke werden durch
geschweifte Klammern gebildet. Sie kdnnen verschachtelt
werden. Mit Blécken werden zusammengehdriende
Programmteile gekenntzeichnet. Blocke zeigen dem
Compiler, wo ein Programmteil beginnt, wo er endet und
was alles dazu gehort.

using system

Definierteinen Aliea Namen im aktuellen Namenspace
HelloWorld un dermdglilcht es, die Bestandteile des
Namensraums-System zu benutzen, ohne den
entsprechenden Spezifizierer anzugeben. In unseren
Beispiel hatte wir statt

System.Console.WriteLine(, HelloWorld“); schlicht
Console.WriteLine(, HelloWorld“); schreiben kénnen,
weil der entsprechende Alias angelegt wurde.

JELH]

Komentare. /* bezeichnet den Beginn eines
Kommentarblocks, */beendet ihn. Diese Art des
Kommentars kann verschachtelt werden. In vielen
Programmeditoren werden Kommentare mit einer
bestimmten Schriftfarbe angezeigt (Visual Studio
Defaultfarbe grun).

public class Programm

Mit dieser Zeile wird innerhalb unseres Namensraums eine
offentlich ansprechbare Klasse mit dem Namen Programm
angelegt.

public static int Main(string[] args)

Sobalt ein Programm gestartet wird, sucht die
Laufzeitumgebung nach dieser Methode. Jedes Programm
besitzt im Normalfall eine Main() Funktion, die als static
und public definiert werden muss. Der Modifikator static
besagt, dass die folgende Methode eine Klassenmethode
(im Gegensatz zu Objektmethode) darstellt. Dies wiederum
bedeutet: Der Aufruf einer statischen deklarierten Methode
kann zu jedem Zeitpunkt erfolgen, ohne das eine Instanz
der Klasse zur Verfligung stehen muss. In Spezialfallen
kdnnen mehr als eine Main() Methode in einer Applikation
angeboten werden (jedoch hdochstens eine pro Klasse); In
diesem Fall muss dem Compiler angegeben werden,
welche Main Methode beim Start angespochen werden soll.
(csc /main/:HelloWorld HelloWorld.cs). Als Parameter
kann fur die Main-Funktion ein String Array mit dem namen
args mitgegeben werden. Dieses String Array dient zur
Bearbeitung von Parameter, die beim Starten eines
Programms mitgegeben werden kdnnen. Auch hierzu
spater mehr.

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last
update:
2018/10/03
13:57

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567828

Code Beschreibung

Aus dem Namensbereich System wird die Mehode
WriteLine der Console aufgerufen. Als Parameter wird hier
eine (hartcodierte) Zeichenkette ausgegeben.
System.Console.WriteLine(,,HelloWorld“); Abgeschlossen werden C#-Befehle immer mit einem
Strichpunkt. Es ist daher moglich, mehrere Anweisungen in
einer Zeile anzugeben (wird nicht empfohlen) sowie eine
Anweiseung auf mehrere Zeilen zu verteilen.

Beendet die Ausfuhrung der Mehtode Main() und gibt den
Wert 0 zurlck.

return 0;

C# unterscheidet Gross/Kleinschreibung.

Zusammenfassung

Wir haben in diesem Kapitel gesehen, wie wir mit dem Application Wizard ein Programm im Visual
Studio .NET erzeugten kénnen. Wir haben den erzeugten Applikations-Rumpf einer Konsolen-
Applikation betrachtet und ihn um die Funktionalitaten Ausgabe eines Strings auf der Konsole und
warten auf eine Eingabe erweitert. Anschliessend habe wir die einzelnen Elemente der Applikation
~HelloWorld“ besprochen.

Kontrollfragen

o

Warum ist die Methode Main() so wichtig fur ein Programm?
Was bedeutet das Wort static?
Welche Arten von Kommentaren gibt es?

Klassen und Objekte

Worum geht es?

FUr die Programmentwicklung ist eine Programmstrukturierung schon bei kleineren, mit Sicherheit
jedoch bei mittleren bis grossen Projekten, unumganglich. C# bietet hier einige Mdglichkeiten an, die

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:38

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:hinweis.png
https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:lernzielkontrolle.png

2026/01/18 02:38 11/48 Ubersicht und Versionen

in diesem Kapitel behandelt werden.

Was lernen Sie in diesem Kapitel?

l Sie lernen in diesem Kapitel folgendes kennen: Klassen und Objekte, Felder einer
Klasse, Methoden einer Klassen, Namensraume

Einfuhrung
Begriffe

Zuerst ein paar wichtige Begriffsdefinitionen, auf denen wir im weiteren Verlauf aufbauen werden.

Eine Klasse ist ein Bauplan zur Erzeugung konkreter Objekte. Sie

Klasse bestehen aus Attributen (Eigenschaften) und Methoden
(Verhaltensweisen). Eine Klasse entspricht dem Datentyp eines Objekts.
Sind Instanzierungen von Klassen. Wenn ein Objekt erzeugt wird, wird
dynamisch Speicher fur diese Objekt angelegt, der irgendwann wieder
freigegeben werden muss. In C# mussen wir uns nit mehr explizit um
die Freigabe des durch Objekte reservierten Speicher kimmern, das
erledigt die GC* (Garbage Collection).

Member einer Klasse Sammelbegriff fr die Attribute und Methoden einer Klasse

Methoden oder auch
Memberfunktionen einer Funktionalitat einer Klasse (definieren Verhalten).
Klasse

Objekt oder auch Instanz
einer Klasse

Deklaration von Klassen

Die Klassendeklaration besteht aus dem Namen der Klasse, den Feldern und der Methode Klasse. Eine
typische Klassendeklaration sehen wir im Folgenden. Dabei wird innerhalb des Namensraums RentCar
die Klasse Vehicle angelegt.

1. namespace RentCar

2

3 public class Vehicle

4.

5 // Class Implementation
6
7

Erzeugen von Instanzen einer Klasse

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:lernziele.png

Last
update:
2018/10/03
13:57

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567828

Warum braucht man Uberhaupt Instanzierungen von Klassen?

Das kommt daher, dass aus objektorientierter Sicht eine Klasse von der Idee her lediglich eine Art
Schablone fur konkrete Objekte darstellt. Nehmen wir als Beispiel die Klasse Vehicle: Will ich mit
dieser Klasse z.B. ein Objekt erzeugen, das einem Auto entspricht, lege ich ein Objekt an und fille die
Felder entsprechend den Eigenschaften eines Autos ab. Das bedeutet, das Objekt Auto ist erst nach
der Instanzierung und der entsprechenden Initialierung fur das Programm verfugbar.

Die Anweisung, um ein Motorraf und zwei Auto-Objekte anzulegen, sehen dann folgender Massen aus:

1. namespace RentCar

2

3 using System

4.

S5. /// <summary>

6 /// Summary description for GarageMain.

7 /// </summary>

8. public class GarageMain

9.

10. public static int Main(string args

11.

12. Vehicle vehiclel new Vehicle("Fahrrad"
13. Vehicle vehicle2 new Vehicle("Motorrad"
14, Vehicle vehicle3 new Vehicle("Auto"
15. Vehicle vehicle4 new Vehicle("Auto"
16.

17.

18.

19.
20. public class Vehicle
21.
22. private string name
23.

24. // Konstruktor

25. public Vehicle(string name

26.

27. _nhame = name

28.

29.
30.

Code|Bedeutung

Mit dem reservierten Wort new werden Instanzen einer Klasse erzeugt, spricht Objekte der
new |Klasse angelegt und initialisiert. Die Anweisung bedeutet fur den Compiler: Erzeuge eine Kopie
des noachfolgenden Datentyps im Speicher meines Computers!

Sie erkennen in vorangehenden Beispiel, dass von einer Klasse haufig mehrere Objekte angelegt
werden, die sich durch unterschiedlich abgefullten Felder unterscheiden, die die Eingeschaften eines
Objektes reprasentieren.

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:38

2026/01/18 02:38 13/48 Ubersicht und Versionen

Felder einer Klasse

In C# unterscheidet man drei Arten von Variablen:

¢ Felder oder auch Instanzvariablen
e Statische Felder (Klassenvariablen)
¢ Lokale Variablen

Felder sind nichts anderes als Variablen oder Konstanten, die innerhalb der Klasse deklariert werden
und auf die Uber ein Objeekt zugegriffen werden kann. Felder entsprechen also den Objektdaten, die
den Zustand eines Objekts speichern.

Syntax: [Modifikatoren] Datentyp Bezeichner [=Initialwert]

Beispiel:
public string _firsthame = ,Frank”;

private int _nrOfEntry = 1;

Notation: [] eckige Klammern bezeichnen optimale Teile einer Syntax. Bedeutet in obigen

! Beispiel: Ein Modifikator kann, muss aber nicht vor dem Datentyp stehen.
Gross- Kleinschreibung: C# ist Case-sensitiv, das heisst alleMitarbeiter und AlleMitarbeiter
! sind fur C# unterschiedliche Bezeichner.

Der Datentyp int ist ein Alias fir den im Namensraum-System definierten Basistyp Int32. Die
Datentypen sind in Kapitel beschrieben.

Initialisierung: Jede Variable muss von der ersten Benutzung initialisiert werden.

Beispiele flr gultige Bezeichner:

myName
_theName
e x1
Name5S7

Beispiele flr ungultige Bezeicher:

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:hinweis.png
https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:hinweis.png

Last
update:
2018/10/03
13:57

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567828

e 1stStart = Zahl am Anfang
e Mein Name = Leerzeichen
e &again = unglltiges Zeichen

Modifikatoren

Der Programmierer beeinflusst mit Modifikatioren die Sichtbarkeit und das Verhalten von Variablen,
Konstanten, Methoden und Klassen oder auch anderen Objekten. Die Modifikatoren in C#:

Modifikator Bedeutung
, Auf die Variable oder Methode kann auch ausserhalb der Klasse zugegriffen
public
werden.
fivate Auf die Variable doer Methode kann nur von innerhalb der Klasse bzw. des
P Datentyps zugegriffen werden. innerhalb von Klassen ist dies Standard.
internal Der Zugriff auf die Variable oder Methode ist beschrankt auf das aktuelle Assembly.
rotected Der Zugriff auf die Variable oder Methode ist nur innerhalb der Klasse und durch
P Klassen, die von der aktuellen Klassen abgeleitet sind, mdglich.
protected Dies entspricht einer logischen ODER-VerknlUpfung oder Modifikatoren internal
internal und protected.
abstract Dieser Modifikator bezeichnet Klassen, von denen keine Instanz erzeugt werden
kann. Von Abstrakten muss immer zuerst eine Klasse bgeleitet werden. Wird dieser
Der Modhifikator flr Konstanten. Der Wert von Felder, die mit diesem Modifikator
const . L "
deklariert wurden, ist nicht mehr veranderbar.
event Deklariert ein Erreignis.
Dieser Modifikator zeigt an, dass die entsprechenden bezeichnete Methode extern
extern (also nicht innerhalb des aktuellen Projekts) deklariert ist. Sie kdnnen so auf
Methoden zugrifen, die in DLLS deklariert sind.
override Sie kénnen abstrakte oder virtuelle Methoden aus einer Basisklasse in der
abgeleitet Klasse Uberschreiben, indem Sie die Methode mit override deklarieren.
Mit diesem Modifiaktor kdnnen Sie ein Datenfeld deklariert, dessen Werte von
readonly ausserhalb der Klasse nur gelesen werden kdnnen. Innerhalb der Klasse ist es nur
maglich, Werte Gber den Konstruktor oder direkt bei der Deklaration zuzuweisen.
Der Modifikator sealed versiegelt eine Klasse. Fortan kénnen von dieser Klasse
sealed : .
keine anderen Klassen mehr abgeleitet werden.
Ein Feld oder eine Methode, die als static deklariert ist, gilt als Bestandteil der
static Klasse selbst. Die Verwendung der Variable bzw. der Aufruf der Methode bendtigt
keine Instanzierung der Klasse.
der Modifikator virtual| ist quasi das Gegenstick zu override. Mit virtual werden
virtual die Methoden der Basisklassen festgelegt, die spater Gberschieben werden kénnen

(mittels override).

Die mdglichen Modifikatoren kbnnen miteinander kombiniert werden, ausser wenn sie sich
widersprechen (z.B. public und private als Teil einer Verablendeklaration).

Modifikatoren stehen bei einer Deklaration immer am Anfang.

Wird ein Feld innerhalb einer Klasse ohne Angabe eines Modifikators deklariert, so dieses Feld
defaultmassig als private angelegt.

https://jmz-elektronik.ch/dokuwiki/

Printed on 2026/01/18 02:38

2026/01/18 02:38 15/48 Ubersicht und Versionen

FUr jede Variable, jede Methode, Klasse oder jeden selbst definierten Datentyp gilt immer der
Modifikator, der direkt davorsteht.

Variable und Felder

Lokale Variable = Lokale Variable sind innerhalb eines durch geschweifte Klammern bezeichneten
Programmblocks deklariert. Es kann nur in diesem Bereich auf sie zugegriffen werden.

1. public class TestClass

2

3 public static void Ausgabe

4.

5. Console.WriteLinde("x hat den Wert {0}.", x); // Fehler!
6

7

8 public static void Main

9.

10. int x Int32.Parse(Console.ReadlLine // Lokale Variable x
11. Ausgabe

12.

13.

Normale Felder einer Klasse. Sie heissen Instanzvariablen, weil sie erst verfligbar
sind, nachdem eine Instanz der Klasse angelegt worden ist.

Auch statische Variablen genannt, weil sie mit dem Modifikator static angelegt
werden. Sie sind verfugbar, wenn innherhalb des Programms der Zugriff auf die
Klasse sichergestellt ist. Dies bedeutet: Es muss keine Instanz der Klasse geben.
Mehr Informationen im Kapitel.

Instanzvariablen

Klassenvariablen

this

this bezeichnet eine Referenz auf die eigene Instanz.

Wie sieht im folgenden Beispiel die Ausgabe aus?

. //Beispiel lokale Variable
. using System

. public class TestClass

public void DoOutput

int x

1
2
3
4
5.
6. private int x
7
8
9
0 Console.WriteLine("X hat den Wert {0}.", x); // Lokale Variable

10.

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last

5832556/03 start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567828

13:57

11.

12.

13.

14. public class Beispiel

15.

16. public static void Main

17.

18. TestClass tst new TestClass
19. tst.DoOutput

20.

Wenn nichts anderes angegeben ist, nimmt der Compiler die Variable, die er in der Hierarchie zuerst
findet. Dabei sucht er zuerst innerhalb des Blocks, in dem er sich gerade befindet, und steigt dann in
der Hierarchie nach oben. In unserem Fallest die erste Variable, die er findet, die in der Methode
DoOutput() deklarierte lokale Variable x.

Es ist maglich, innerhalb der Methode DoOutput() auf das Feld zuzugreifen, obwohl dort eine Variable
mit demselben Namen existiert. Dazu verwendet man das reservierte Wort this.

1. //Beispiel lokale Variable
2. using System

3.

4. public class TestClass

5.

6. private int x

7. public void DoQOutput

8.

9. int X

10. Console.WriteLine("X hat den Wert {0}.", this.x);// die

Instanzvariable x!! -> x=10

11.

12.

13.

14. public class Beispiel

15.

16. public static void Main
17.

18. TestClass tst new TestClass
19. tst.DoOutput
20.

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:38

2026/01/18 02:38 17/48 Ubersicht und Versionen

- Bei allen mit this quantifizierten Variablen handelt es sich immer um Instanzvariablen.

Deklaration von Konstanten

C# hat zwei verschiedene Arten von Konstanten: Compilezeitkonstanten und Laufzeitkonstanten. Ein
Beispiel:

1. using System

2. public class ConstantValues

3.

4 public static readonly int StartValue // Laufzeitkonstante
5. public const double PI = 3.141592654; // Compilezeitkonstante
6

Beide hier deklarierte Konstanten sind statisch. Da Konstanten immer demselben Wert haben, sind sie
implizit statisch. Vom Konstruktor initialisierte readonly-Wert konnten hingegen fur jedes Objekt einen
anderen Inhalt haben.

Pl ist eine Compilezeit-Konstante. Uberall wo der Compiler auf dieses Sysbol
trifft, wird die effektive Zahl eingesetzt. Compilezeitkonstanten existieren
nur far primitive Datentypen, Enums und Strings. Sie mussen bei der
Deklaration initialisert werden.

Bei Laufzeitkonstanten, die mit dem Schltsselwort readonly deklariert sind,

Laufzeitkonstante wird vom Compiler eine Referenz auf die Variable gesetzt. Sie kdnnen in
Konstruktor initialisiert werden und existieren fur beliebige Datentypen.

Compilezeitkonstante

Der Unterschied zeigt sich vor allem bei Konstanten, die in Bibliotheken definiert sind. Bei Anpassung
des Werts einer Bibliothekskonstatnten andern sich der Wert in abhangigen Assemblies erst bei deren
Neu-Compilation. Bei readonly-Konstanten mussen die abhangingen Assemblies nicht neu compiliert
werden.

Verwenden Sie wenn immer moglich readonly-Konstanten, ausser bei Konstanten, die ihren Inhalt
sicher nie andern.

Methoden einer Klasse

Methoden stellen die Funktionen einer Klasse dar.

|Syntax|[Modifikator] Ergebnistyp Bezeichner (Parameter|[, Parameter]]){ Anweisungen }|

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:hinweis.png

Last

5832556/03 start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567828

13:57

Auch hier gilt: wenn fur eine Methode kein Modifikator angegeben wird, wird sie als private angelegt.

In C# sind (im Gegensatz zu C++) nie Forward-Deklarationen nétig, d.h. Sie kénnen Ihre
Methoden deklarieren, wo Sie wollen - der Compiler wird sie finden.

Das Ergebnis void bedeutet, dass die Methode keinen Wert zurlckliefert. Bei einer solchen Methode
handelt es sich lediglich um die Ausfihrung von einem Block von Anweisungen. Die deklarierten
Typen mussen genau eingehalten werden. C# ist eine ausgesprichene typensichere Sprache.
Innerhalb einer Methode wird ein Wert mittels der Anweisung return zurickgeliefert. Auch hier gilt:
Der Typ, den Sie mit return verwenden, muss mit der Deklaration des Ereignistyps der
entsprechenden Methode Ubereinstimmen.

1. public class TestClass
2.
3. public int a; // Instanzvariablen sind normalerweise private!
4. public int b
5.
6. public double Dividieren
7.
8. a/b; // Vorsicht: dies ist eine Integerdivision
9.
10.
11.
12. public class MainClass
13.
14, public static void Main
15.
16. TestClass myTest new TestClass
17.
18. myTest.a
19. myTest.b
20. double ergebnisl = myTest.Dividieren // Ok. ..
21. int ergebnis2 = myTest.Dividieren // FEHLER!!!
10/15=2/3=0.66666. .
22. // Integer kann nur ganze
Zahlen enthalten.
23.
24.
Parameteruibergabe

An Methoden kénnen Parameter Ubergeben werden, die sich innerhalb der Methode wie lokale

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:38

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:hinweis.png

2026/01/18 02:38 19/48 Ubersicht und Versionen

Variablen verhalten. Wir unterscheiden zwei Arten von Parameter:

Mit Werteparameter werden Werte an einen Methode Ubergeben, die in
dieser benutzt werden kdnnen, ohne dass die urspringliche Variablen
(sprich die Variablen des Aufrufers) verandert werden kénnen. In der
aufgerufenen Methode werden implizit Kopien fur die Variablen
angelegt.

Werteparameter
Ubergabe byValue

Referenzparameter werden durch das reservierte Wort ref deklariert. Es
wird in diesem Fall keine Wert, sondern eine Referenz auf die Variable
des Aufrufers tibergeben. Alle Anderungen an der Variablen innerhalb
der aufgerufenen Methode andern auch die Variable in der
aufgerufenden Methode. Die Variablen mussen von dem Methodenaufruf
initialisiert werden. Hier wird in der aufgerufenen Methode keine Kopie
angelegt.

Referenzparameter
Ubergabe byReference

1. // Parameteribergabe byReference

2. public void Swap(ref int a, ref int b
3

4 int ¢ a

5. a-=>b

6 b =c

7

8.

9. // aufrufende Methode

10. int i i<theArray.Length; i
11.

12. theArray|i theArray|1i

13.

14. Swap (ref theArray|i ref theArray|i
15.

16.

Wenn Sie eine Methode mit Referenzparametern aufrufen, missen Sie beim Aufruf das reservierte
Wort ref benutzt.

Instanzen von Klassen werdem immer als Referenz Ubergeben (auch ohne Verwendung von
ref). Referenzparameter missen vor dem Aufruf initialisiert werden.

Funktionieren wie ref-Parameter, missen jedoch im Gegensatz zu diesen vorher

out-Parameter nicht initialisiert werden.

Ein Beispiel fur out-Parameter:

1. using System

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:hinweis.png

Last
update:
2018/10/03
13:57

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567828

2.

3. class TestClass

4,

5. // Parameteriubergabe mittels out-Parameter
6. public static void IsBigger(int a, int b, out bool isOK
7.

8. // Erste Zuweisung = Initialisierung

9. isOK = a b

10.

11.

12. public static void Main

13.

14. bool isOK; // nicht initialisiert ...
15. int a

16. int b

17.

18. a Convert.ToInt32(Console.ReadLine
19. b Convert.ToInt32(Console.ReadlLine
20.

21. isBigger(a, b, out isOK

22.

23. Console.WriteLine("Ergebnis a>b: {0}", isOK
24.

25.

Optionale Parameter

Ein von C++ Entwicklern lange vermisstes Feature findet mit .NET 4 Einzug in die
Programmiersprache C#. Parameter werden als optional deklariert, indem ein Defaultwert fur sie
angegeben wird. Im folgenden Beispiel sind y und z optionale Parameter und kdnnen beim Aufruf
weggelassen werden.

1. public void Calculate(int x, int y=5, int z=7);// Deklaration der
Methode.

2. // Aufruf der Methode

3. Calculate(1l, 2, 3 // normaler Aufruf der Methode

4. Calculate(l, 2 // weglassen von z => identisch wie Calculate(1, 2,
7)

5. Calculate(l); // weglassen von y & z => identisch wie Calculate(1, 5,
7)

Es ist auch maglich, die Parameter explizit beim Namen zu nennen.

1. Calculus(1, z, 3); // Ubergabe von z mit Namen

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:38

2026/01/18 02:38 21/48 Ubersicht und Versionen

Optionale Parameter dirfen auch fir Konstruktoren und Indexer verwendet werden.

Uberladen von Methoden

hierbei handelt es sich um die Mdglichkeit, mehrere Methoden mit dem gleichen Namen zu
deklarieren, die aber unterschiedliche Funktionen ausfuhren. Der Compiler muss die Methode beim
Aufruf eindeutig identifizieren konnen. Deshalb mussen sich die Methoden durch Anzahl und/oder
Type der Ubergabeparameter unterscheiden.

Folgendes Beispiel zeigt die Uberladung der Methode Addiere in 3 verschiedenen Variablen:

1. using System

2.

3. public class Addition

4,

5. public int Add(int a, int b a+b

6. public int Add(int a, int b, int ¢ a+b+c

7. public int Add(int a, int b, int ¢, int d a+b+c+d
8.

9.

10. public class Beispiel

11.

12. public static void Main

13.

14. Addition myAdd new Addition

15.

16. int a Convert.ToInt32(Console.ReadLine

17. int b = Convert.ToInt32(Console.ReadLine

18. int ¢ Convert.ToInt32(Console.ReadLine

19. int d Convert.ToInt32(Console.ReadlLine

20.

21. Console.WritelLine("a+b = {0}", myAdd.Addiere(a,b
22. Console.WritelLine("a+b+c = {0}", myAdd.Addiere(a,b,c
23. Console.WriteLine("a+b+c+d = {0}", myAdd.Addiere(a,b,c,d
24,

25.

Die Methoden, die Uberladen werden sollen, mussen sich in der Art und/oder in der Menge der
Ubergabeparameter unterscheiden. Der Ergebnistyp hat auch die Uberladung von Methoden
keinen Einfluss.

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:hinweis.png

Last
update:

2018/10/03

13:57

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567828

Statische Methoden / Variablen

Flr statische Teile einer Klasse qilt, dass fur deren Benutzung kein Instanz der Klasse existieren muss,

Solche Variablen und Methoden gehdéren zur Klasse und nicht zum Objekt.

Das bedeutet:

Wenn mehrere Instanzen einer Klasse erzeuget wurden und in jeder dieser Instanzen wird eine

statische Methode aufgerufen, dann ist das immer dieselbe Methode!

Ein Beispiel:

. /* Beispielklasse statische Felder */
. public class Vehicle

int anzVerliehen
static int anzGesamt

public void Ausleihen
anzVerliehen
anzGesamt

public void Zurueck
anzVerliehen
anzGesamt

public int GetAnzahl

anzVerliehen

public static int GetGesamt

anzGesamt

Innerhalb einer statischen Methode kdnnen Sie nur auf lokale und statische Variable zugreifen,
nicht aber auf Instanzvariable. In C# kénnen Sie keine globalen Variablen anlegen. Sie
brauchen immer eine Klasse dazu. Eine Mdglichkeit besteht nun darin, eine Klasse z.B. mit

dem Namen GlobaleVariable anzulegen, in denen die allgemein zu Verfugung stehenden Variablen
public static deklariert werden. Uber den Klassenbezeichner kdnnen so die Variablen von jedem

https://jmz-elektronik.ch/dokuwiki/

Printed on 2026/01/18 02:38

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:hinweis.png

2026/01/18 02:38

23/48 Ubersicht und Versionen

anderen Ort in der Appliakation benutzt werden.

Zugriff auf statische Methoden und Variablen

Ein Beispiel:

13.
14,
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

. // Beispielklasse statische Methoden
. using System

. public class TestClass
public in myValue

public static bool SCompare(int theValue

theValue

public bool Compare(int theValue

myValue theValue

public class Beispiel

public static void Main

TestClass myTest new TestClass

//Kontrolle mittels SCompare
bool testl = TestClass.SCompare // Methodenaufruf

//Kontrolle mittels Compare
myTest.myValue
bool test2 = myTest.Compare // Methodenaufruf

Console.WriteLine("Kontrolle 1 (SCompare): {0}", testl
Console.WriteLine("Kontrolle 2 (Compare): {0}", test2

SCompare() ist eine statische Methode, Compare() hingegen ist eine Instanzmethode. Wenn wir auf
SCompare() zugreifen mochten, geht dies nicht Uber das erzeugte Objekt, sondern wir missen den
Klassenbezeichner verwenden.

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last
update:
2018/10/03
13:57

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567828

Statische Klasse

Funktionsbibliothek werden oft in Klassen mit rein statischen Methoden zusammengefasst. Ab .NET
2.0 ist es moglich, die Klasse selbst statisch zu deklarieren, damit von dieser Klasse keine Objekte
instanziert werden konnen.

Folgende Regeln gelten fir statische Klassen:

¢ Enthalten nur static members

¢ Konnen nicht instanziert werden
¢ Sind sealed

* Haben keinen Konstruktor

Statische Klassen eignen sich gut um z.B. eine Methoden-Sammlung von mathematischen Methoden
zu erstellen. Da diese nicht instanziert werden muss, kdnnen die Methoden direkt aufgerufen werden.

Folgendes Beispiel zeigt Umwandlungsfunktionen von Celscius nach Fahrenheit.

1. public static class TemConverter

2

3 public static double CtoF(double celsius

4.

5. Celsius 1.8 // Convert to Fahrenheit
6

7

8. public static double FtoC(double fahrenheit
9.

10. fahrenheit 1.8

11.

12.

VB.NET realisiert diese Funktionalitat in einem Modul.

Initialisierung

Konstruktoren

Beim Erzeugen eines Objekts einer Klasse mit Hilfe des Operators new wird der sogenannte
Konstruktor der entsprechenden Klasse aufgerufen.

Der Konstruktor ist eine Methode ohne Ruckgabewerte (auch wenn nicht void bei der Deklaration
angegeben wird), die den Namen der Klasse tragt. Normalerweise ist er mit dem Modigikator public

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:38

2026/01/18 02:38 25/48 Ubersicht und Versionen

versehen, damit er von aussen zugreifbar ist.

Der Konstruktor hat die Aufgabe, samtliche Instanzvariablen einer Klasse zu initialisieren und kann
uberladen werden.

Folgendes Beispiel zeigt eine Klasse mit zwei Konstruktoren, den sogenannten Default-Konstruktor
ohen Parameter und einen Konstruktor mit Parameter zur Initialisierung der Instanzvariablen.

1. public class Coordinate

2

3 private int x, y; // 2 Instanzvariablen

4.

5. public Coordinate() // Default-Konstruktor
6

7 X

8. y

9.

10.

11. public Coordinaten(int A, int B)// Konstruktor mit Parametern
12.

13. this.x = A

14. this.y = B

15.

16.

Wird kein Konstruktor angelegt, erzeugt der Compiler automatisch einen Default-Konstruktor. Sobald
aber ein Konstruktor vorhanden ist, entfallt dieser automatische Mechanismus.

Konstruktoren kdnnen einander gegenseitig aufrufen. So kann der Initilisierungscode wieder
verwendet werden.

1. public class Coordinate

2

3 private int x, y; // 2 Instanzvariablen

4.

5. public Coordinate this // Default-Konstruktor

6

7

8.

9. public Coordinate(int A, int B) // Konstruktor mit Parameter

10.

11. this.x = A

12. this.y = B

13.

14.

15. public Coordinate(int A, int B): this // Konstruktor mit
vorhergehenden

16. // Aufruf des

Konstruktors mit drei Parameter

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last
update:
2018/10/03
13:57

17.

18. this.x = A
19. this.y = B
20.

21.

22. public Coordinate(int A, int B, int C) // Konstruktor mit drei

Parameter

23.

24 .

25.

26.

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567828

Destruktoren / Finalizer

Der Destrukor erledigt im Prinzip die Aufraumarbeiten beim Ldschen eines Objektes. Destruktoren

heissen ebenfalls gleich wie die Klassen, mit einem vorangestellten Tilte Zeichen ,,~"“.

1. public class File

2

3 ~File // Destruktor (kein Modifikator)
4,
5
6

Zu einem spateren Zeitpunkt werden wird noch feststellen, dass mit folgender Code-Sequenz ein
reservierter Speicher eines Objektes wieder freigegeben werden kann.

File f new File f null; // Referenz entfernen und dann. ..
GC.collect // ...aufrufen.

Im Gegensatz zu C++ ist der Destruktor in C# nicht deterministisch. Das bedeutet, dass er zu einem
unbekannten Zeitpunkt vom GC* (Garbage Collection) aufgerufen wird. Man spricht deshalb oft auch
von einem Finalizer. Meinstens ist es nicht nétig, in C# einen Destruktor zu erstellen, da der GC*”
(Garbage Collection) den Speicher wieder freigibt. Nur bei der Verwendung von unmanaged
Ressourcen wie z.B. Datenbankverbindung oder externen Windows-Ressourcen (Bitmaps, Fonts) ist
ein Destruktor notwendig. Es gilt die Regel, dass Objekte, die auf andere Objekte mit einem
Destruktor referenzieren, selbst auch einen Destruktor haben.

Weiteres zur Funktionsweise des GC*" (Garbage Collection) wird im Dokument xxxx weiter
eingegangen.

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:38

2026/01/18 02:38 27/48 Ubersicht und Versionen

Namensraume

Ein Namensraum bezeichnet einen Gultigkeitsbereich fur Klassen. Innerhalb eines Namensraums
kdnnen mehrere Klassen oder auch weitere Namensraume deklariert werden.

Ein Namensraum ist nicht zwangslaufig auf eine Datei beschrankt; innerhalb einer Datei kdnnen
mehrere Namensraume deklariert werden. Ebenso ist es mdglich, einen Namensraum Uber zwei oder
mehrere Dateien hinweg zu deklarieren.

In einem Namensraum konnen nur Klassen oder andere Namensraume deklariert werden, nicht
jedoch Methoden oder Felder.

Beispiel einer Namensraum-Deklaration:

1. namespace MySpace

// Deklarationen von Klassen und Namensraumen

> Wi

Wenn Sie einen andere Klasse im selben Namensraum, aber in einer andere Datei deklarieren
maochten, geben Sie im Namensraum einen namespace mit demselben Namen an.

Namensraume konnen verschachtelt werden. Das sieht fur den Namensraum MyName.Dok so aus:

namespace MySpace
namespace Dok

1.
2
3
4.
5 // Deklaration fur MySpace.Dok
6

7

Verwenden von Namensraumen

Sie haben zwei Moglichkeiten, wie Sie Namensraume verwenden kénnen. Mit Spezifizierern (fully
qualified name):

CSharp.EineKlasse.EineMethode // Namensraum CSharp
. // oder mittels des Schlisselworts using

. using CSharp
. EineKlasse.EineMethode

O Uk, WN B

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last

;8;‘;5%/03 start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567828

13:57

Damit werden alle Symbole des Namenspace CSharp importiert.

Der globale Namensraum

Alle Klassen, die nicht in einem angegebenen Namensraum deklariert werden, werden automatisch
dem globalen Namensraum von C# zugewiesen. Der globale Namensraum ist immer vorhanden. Die
Verwendung von eigenen Namensraumen sie hier ausdrucklich empfohlen.

Zusammenfassung

Wir haben in diesem Kapitel Klassen, Objekte und Namensraume sowie deren Elemente und
verschiedene Zugriffsarten betrachtet. Das Verstandnis dieser Punkte ist Voraussetzung fur deie
folgenden Kapitel.

Kontrollfragen

o

Von welcher Basisklasse sind alle Klassen in .NET abgeleitet?

Object. Die Mutter aller
Klassen.

Konstruktor aufrufen und
Instanzierung erstellen.

Warum sollen Bezeichner flr Variablen und Methoden immer eindeutige, |Zur besseren Orientierung
sinnvolle Namen tragen? und lesbarkeit.

Welche Sichtbarkeit hat ein Feld, wenn bei der Deklaration kein
Modifikator benutzt wurde?

Was ist der Unterschied zwischen Referenz- und Werteparametern?
Worauf muss beim Uberladen von Methoden geachtet werden?

Wie konnen Sie innerhalb einer Methode auf ein Feld einer Klasse
zugreifen, wenn eine lokale Variable mit demselben Namen existiert?

Mit welchem reserviert Wort wird ein Namensraum deklariert? namespace {}

Welche Bedeutung hat das reservierte Wort new?

private

Ubung Klasse und Objekte

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:38

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:lernzielkontrolle.png

2026/01/18 02:38 29/48 Ubersicht und Versionen

/

F

1. Legen Sie ein neues Projekt vom Type Console Application an.

2. Deklarieren Sie eine Klasse, in der Sie einen String, einen Integer und einen Double speichern
konnen. Deklarieren Sie die Felder als private. Erstellen Sie auch einen Defaultkonstruktor fur
die Klasse.

3. Erstellen Sie ein Konstruktor mit 3 Parameter, sodass die Felder bereits bei der Instanzierung
mit einem Wert belegt werden konnen.

4. Erstellen Sie eine statische Methode mit dem Namen Multiply, die zwei Integer-Werte
miteinander multipliziert.

5. Erstellen Sie drei gleichnamige (Uberladene) Methoden mit dem Namen SetValue, um den
Feldern Werte zuweisen zu kdnnen. Hinweis: Spater werden wir diese Funktionalitat mit
Properties realisieren.

6. Erstellen Sie eine Methode AddString, die einen als Parameter Ubergebenen String dem in der
Klasse als Feld gespeicherten String anfugt. Um zwei Strings aneinander zu fuagen, kénnen Sie
den + Operator benutzen. Die Methode soll keinen Wert zurtckliefern.

Grundlagen Datentypen

Worum geht es?

Programme tun ja eigentlich nichts anderes, als Daten zu verwalten und damit zu arbeiten. Jede
Programmiersprache stellt zur effizienten Datenverarbeitung verschiedene Datentypen zur Verflgen.

Was lernen Sie in diesem Kapitel

- Wir erforschen in diesem Kapitel die wichtigsten .NET-Datentypen und zeigen, wie Sie damit
umgeben kénnen.

Datentypen

Speicherverwaltung

NET kennt zwei Arten von Datentypen:

Auch wertebehaftete Typen genannt. Bei diesen Typen wird der Inhalt der Variablen

Wertetypen direkt gespeichert. Die Daten liegen auf dem Stack.

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:uebungen.png
https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:lernziele.png

Last
update:
2018/10/03
13:57

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567828

Speichert einen Verweis auf Daten. Die Daten selbst werden auf dem Heap

Referenztypen gespeichert.

Heap und Stack sind zwei verschiedene Speicherbereiche in einem Programm.

Hier werden Daten so lange abgelegt, wie sie tatsachlich verwendet werden und werden dann
automatisch freigegeben. Dazu gehdren lokale Variablen und Parameter von Methoden. Sie
leben bis zum Verlassen des Anweisungsblocks, in dem sie angelegt bzw. in den sie
ubergeben wurden. Auf dem Stack werden alle Grundtypen (int, long, byte usw.) abgelegt.
Speicher auf dem Heap muss angefordert werden und kann, wenn er nicht mehr bendtigt
wird, wieder freigegeben werden. Die GC** (Garbage Collection) 16scht auf dem Heap
angelegte Objekte zu einem uns unbekannten Zeitpunkt. Klasseninstanzen und String werden
typischerweise auf dem Heap abgelegt.

Stack

Heap

Die Null-Referenz

in C# ist es moglich, dass eine Objektreferenz zwar vorhanden ist, das Objekt aber noch keinen Inhalt
besitzt. Das reservierte Wort null ist der Standartwert fur alle Referenztypen.

Nullbare Typen

.NET 2.0 brachte das Feature der Nullable Types fur Wertetypen. Nullbare Typen enthalten alle
Werte des darunterliegenden Datentypen und zusatzlich einen Wert fir den undefinierten Zustand
(null). Dies ist vor allem in der zusammenarbeit mit Datenbanken interessant. So ist es z.B. méglich,
einen Integer der Wert null zuzuweisen.

1. int? x
2. X null) // x kann auch den Wert null annehmen

Solche Typen werden in C# mit dem Fragezeichen deklariert. Das Fragezeichen ist flr die Kurzform
fur SystemNullable<T>, wobei fur den gegebenen Datentypen steht. Das heisst flr T kann jeder
beliebiger Type oder Klasse stehen.

Garbage Collection

Mit dem GC*®(Garbage Collection) soll dem Problem der Speicherlécher der Garaus gemacht werden.
Vor allem in C++ Programmen konnte, auch dem aufmerksamsten Programmierer entgehen, dass
benutzter Speicher nicht mehr freigegeben wurde. Daraus resultierte oft Programmabsturze oder
~eingefrohrene” Programme.

In .NET ist dank dem GC**(Garbage Collector) der Unterschied zwischen dem Arbeiten mt Werttypen
und Referenztypen sehr klein geworden. Fur den Programmierer macht sich der Unterschied
normalerweise nur dadurch bemerkbar, dass Referenztypen mit new angelegt werden mussen,
Wertetypen jedoch nicht. Eine Ausnahmen ist die Klasse String, weil davon Objekte ohne new
angelegt werden kénnen.

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:38

2026/01/18 02:38

31/48

Ubersicht und Versionen

Standard-Datentypen von C#

Alle Standard-Datentypen in C# sind Objekte, d.h. sie sind wie alle anderen Objekte direkt oder
indirekt von System.Object abgeleitet. System.Object ist damit die Ur-Klasse aller Objekte in .NET.

Alias |Grosse Bereich Datentyp
Sbyte |8 Bit -128 bis +127 System.Sbyte
byte |8 Bit 0 bis 255 System.Byte
char 16 Bit Nimmt ein 16 Bit Unicode Zeichen auf System.Char
short |16 Bit -32768 bis +32767 System.Int16
ushort |16 Bit 0 bis 65535 System.UInt16
int 32 Bit -2°147°483°648 bis 2°147°483°647 Systemint32
Uint 32 Bit 0 bis 472947967 '295 System.Uint32
. -97223°372°036°854°775°808 bis
long 64 Bit 9°223°372°036 854775807 System-Int64
ulong |64 Bit 0 bis 18°446°744°073°709°551°615 System.Uint64
- * _ H _ *
float 132 bit +-1.5*¥10 hoch -45 bis +-3.4*10 hoch 38 7 Stellen System.Single
genau
_§ 0% i *
double 164 Bit ;—eiéou 10 hoch 324 bis 1.7*10 hoch 308 15 Stellen System.Double
decimal(128 Bit 1.0*10 hoch -28 bis 7.9*10 hoch 28 fur Betrage System.Decomal
bool 1 Bit true und false System.Boolean
string |unbestimmt Nu'r begrenzt druch Speicherplatz, fur Unicode System.String
Zeichen
unbestimt |Beliebige Grosse (ab .NET 4.0) System.Numerics.Biginteger
256 Bit Komplexe Zahlen (Das Monster) System.Numerics.Complex

Natzlich sind die Datenformate DateTime und TimeSpan. Es handelt sich um Klassen die jedoch
Typen reprasentieren die oft benotigt werden.

Die Klasse System.Numerics.Biglnteger ist ein Wertety und unterstutzung alle gewohnlichen
Integeroperationen, inklusive Bitmanipulation. Ein Biginteger kann beliebig grosse ganzzahlige Werte
annehmen. Seine Grosse ist nur durch den Speicher begrenzt.

BigInteger bigValue

BigInteger.Parse("987398347598743985797394857") ;

Die Klasse System.Numerics.Complex erlaubt die Arbeit mit komplexen Zahlen. Die Initialisierung
erfogt durch Ubergabe von Real- und Imaginarwert.

1. Complex z1
2. Complex z2
3. Complex z3

new Complex(12, 16
Complex.FromPolarCoordinates (10
z1 z2

.524

Methoden von Datentypen

Weil wie erwahnt alle C#-Standardtypen Objekte sind, enthalten sie auch Methoden und Felder. Dabei

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last

5832556/03 start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567828

13:57

handelt es sich einerseits um die Members, die von Objekt ererbt worden sind, andererseits um
typspezifische Methoden.

/"Suchen Sie in der Hilfe alle Members von Int32.

#

Type und typeof()

Zu den Eigenschaften einer typensicheren Sprache wie C# gehdren auch, dass man zu jedem
Zeitpunkt herausfinden kann, welchen Datentyp eine Variable hat oder von welcher Klasse sie
abgeleitet ist.

Der Operator typeof wird wie eine Methode eingesetzt, ist jedoch ein Schlusselwort der Sprache C#.
Er liefert beim Aufruf einen Wert vom Typ Type, mit dessen Hilfe Gber Membervariablen vielerlei
Informationen Uber den Typ der entsprechenden Variablen ermittelt werden konnen.

Viele dieser Informationen werden vor allem fir die Erstellung von Programmiertools eingesetzt.
Meistens kennt man wahrend der Programmierung den verwendeten Datentyp; eine doch recht haufig
vorkommende Ausnahme kinnte die Ermittlung des Datentyps von Eingaben sein, wie in folgendem
Beispiel dargestellt.

1. using System

2.

3. classTestClass

4.

5. public static void Main

6

7 int x

8. Type t typeof (Int32

9.

10. t.equal (x.GetType
11.
12. Console.WriteLine("x ist vom Type Int32."
13.
14.
15.
16. Console.WritelLine("x ist nicht vom Typ Int32."
17.
18.
19.

Die Ausgabe nach einem Lauf ist dann:

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:38

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:uebungen.png

2026/01/18 02:38 33/48 Ubersicht und Versionen

x ist vom Typ Int32.

Typkonvertierung

NET ist sehr typsicher. Die Typsicherheit einer Sprache hat den grossen Vorteil, dass Fehler, die das
Arbeiten mit Datentypen betrefen, in den meisten Fallen schon zur Kompilierzeit und nicht erst
wahrend der Laufzeit in Erscheinung treten. Um in einem Programm ganz gezielt Typkonvertierung
durchzufihren, stellt C# zwei verschiedene Konvertierungsarten zur Verfugung:

Beispiel: Bei der Zuweisung einer Variable vom Typ byte (notabene einer
initialisierten) an eine int- Variable wird eine automatisch (oder eben
implizite) Typkonvertierung durchgeflhrt.

Implizite
Konvertierung™

1. int i
2. byte b
3.1 b; // implizite Konvertierung von byte in int. byte -> int

Eine implizite Konvertierung® wird nur dann durchgefiihrt, wenn bei der Konvertierung in keinem Fall
ein Fehler entstehen kann. Im obigen Beispiel ist sichergestellt, dass ein byte immer in einem int Platz
hat. Anderst ausgedruck kann man sagen dass die Zahlenmenge von byte kleiner ist als die
Zahlenmenge von Integer.

Auch als Casting oder im speziellen Fall Typcasting, bezeichnet. Die explizite
Konvertierung® missen Sie immer dann einsetzen, wenn der Zieldatentyp
Explizite kleiner ist als der Stammdatentyp. Bei einer expliziten Konvertierung sind Sie
Konvertierung®’ als Programmierer dafur verantwortlich, dass die Konvertierung erfolgreich
durchgefuhrt werden kann. Der gewlunschte Datentyp wird in Klammer vor
den zu konvertierenden Wert oder Ausdruck gesetzt.

Das obige Beispiel wird umgedreht:

1. int i

2. byte b

3. b byte)i; // explizite Konvertierung von byte in int. Error bei i >
2551

Wenn der Wert von i jetzt 400 statt 100 betragt, wird die Konvertierung trotzdem ausgeflhrt. Der
Bereich des Werts 400, der im Dualsystem nicht in einem byte Typ Platz hat, abgeschnitten
(Uberlauf). Das wohl kaum erwartete Ergebnis in diesem Fall ist 144 fir b. Vom Compiler wird kein
Fehler gemeldet. Denken Sie an lhre Verantwortung!

In C# haben Sie eine Moglcihkeit, solche Fehler bei expliziter Konvertierung zu erkennen und
entsprechend zu behandeln. Das Schlusselwort hierzu heisst checked:

Ein Beispiel wie checked eingesetzt werden kann:

1. using System

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last
update:
2018/10/03
13:57

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567828

2.

3. public class Beispiel

4,

5. public static void Main

6.

7. int source Convert.ToInt32(Console.ReadLine
8. byte target

9. checked

10.

11. target byte) (source

12. Console.WriteLine("Wert: {0}", target
13.

14.

15.

Die Konvertierung wird nun innerhalb des checked-Blocks Uberwacht. Sollte sie fehlschlagen, wird
eine Exception ausgeldst (hier eine System.OverflowException), die Sie abfangen konnen. Wie das
geht, werden wir im Kapitel: Strukturierte Fehlerbehandlung. Hier so viel: Explizite Konvertierung
konnen und sollen auch, wenn notwendig, Uberwacht werden.

Die Uberwachung wirkt sich nicht auf Methoden aus, die aus dem checked-Block heraus
aufgerufen werden.

Das as-Operator

Das as-Operator ist eine Alternative zur expliziten Konvertierung mit dem Zieltyp in Klammern. Diese
Variante ist sogar in vielen Fallen zu bevorzugen. Ein Beispiel soll den Einsatz verdeutlichen.

1. object obj Factory.GetObject

2. MyType t obj as MyType; // Achtung nur mit Referenztypen moglich
3. t null) // ...und damit auf null prifbar

4.

5. // arbeite mit t, es ist ein MyType.

6.

7. Else

8.

9. // Typkonvertierung nicht erfolgreich.

10.

Im Unterschied zum cast-Operator wirft diese Art der Konversion keine Exceptions, sondern dem
Zielobjekt wird eine null-Referenz zugewiesen, wenn die Konversion fehlschlagt. Zudem arbeitet der
as-Operator nicht mit Werttypen. Auf diese Weise kann wahrend der Laufzeit Uberprift werden ob

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:38

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:hinweis.png

2026/01/18 02:38 35/48 Ubersicht und Versionen

eine Umwandlung erfolgreich war. Typische Anwendung kénnte eine Uberpriifung bei einer Eingaben
sein, bei der geprift werden soll, ob eine z.B. rein Char oder String Eingabe erfolgt ist und somit keine
Zahlen eingegeben wurden.

Der is-Operator

Mit dem is-Operator lasst sich Uberprifen ob eine Variable oder Objekt von einem gewunschten Type
oder Klasse ist. Folgendes Beispiel soll das verdeutlichen.

NNNNNNNNRRERERRBRBRHKER 2 2
NOoOUDWNROOWONOU DN WNRO® O

28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

coNO UL B~ WN K

. class Classl
. class Class?
. class Class3 : Class2 // Ableitung von class2

class IsTest
static void Test(object obj

Classl a
Class2 b

obj is Classl

Console.WritelLine("obj is Classl”
a Classl)obj
// Do something with "a"

obj is Class?2

Console.WritelLine("obj is Class2"
b Class2)obj
// Do something with "b"

Console.WriteLine("obj is neither Classl nor Class2"

// Main Programm
static void Main

Classl cl new Classl
Classl c2 new Class?2
Classl c3 new Class3
Test(cl

Test(c2

Test(c3

Test("a string"

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last
update:
2018/10/03
13:57

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567828

41. /* Ausgabe auf der Console

42. obj is Classl

43. obj is Class2

44, obj is Class2 -> Beachte hier wird auf die abgeleitete Klasse (Basis-

Klasse) verwiesen.
45, */

Zeilennummer|Erklahrung

1 Definition der Klasse Class1.

2 Definition der Klasse Class2.

3 Definition der Klasse Class3 die von Class2 ableitet.

4 e

5 Klasse IsTest mit der...

6 v

7 ...mit der statischen Methoden Test() wird deklariert. Die Mehtode Test() erwartet
ein Parameter vom Type object.

8 e

9 Eine lokale Variable a vom Typ Classl und...

10 ...eine Iok.ale Variable b vom Typg Class2 wird erstellt. Diese sind noch null und
haben keine Referenz auf ein Objekt.

11 e

12 Uberpriifen ob die Methoden Variable o vom Typ Class1 ist.

13 v

14 Einen Text ausgeben.

15 Typcasting. Hier wird die Variable a einen Typecast-Zeiger vom Objekt o Ubergeben.

16

17 e

18 Uberpriifen ob die Methoden Variable o vom Typ Class2 ist.

19 v

20 Einen Text ausgeben.

21 Typcasting. Hier wird die Variable b einen Typecast-Zeiger vom Objekt o Gbergeben.

22

23 v

24 Wenn der Parameter o kein Typ Class1 oder Class2 ist.

25 e

26 Einen Text ausgeben.

27 v

28 Ende der Methode Test().

29 v

30 Haupt-Winqu-Methode oder Einstiegs Methode von Windows. Es werden keine
Parameter Ubergeben.

31 v

32 Ein Objekt c1 vom Type Class1 (Konstruktor) erstellen.

33 Ein Objekt c1 vom Type Class2 (Konstruktor) erstellen.

34 Ein Objekt c1 vom Type Class3 (Konstruktor) erstellen.

35 Die statischen Methode Test()...

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:38

2026/01/18 02:38 37/48 Ubersicht und Versionen

Zeilennummer Erklahrung

36 ...mit Ubergabe verschiedener Objekte...

37 ...aufrufen.

38 Die statische Methode Test() mit einem Objekt vom Typ String aufrufen.

39

40 Ende des Programms

41

47 Ausgabe zeigt die Ausgabe vom Methodenaufruf von Zeile 35. Der Objekttyp Classl

wurde erkannt.
Ausgabe zeigt die Ausgabe vom Methodenaufruf von Zeile 36. Der Objekttyp Class2

43
wurde erkannt.

44 Ausgabe zeigt die Ausgabe vom Methodenaufruf von Zeile 37. Der Objekttyp Class2
wurde erkannt! Achtung, Class3 leitet von Class2 ab und ist somit vom Typ Class2.
Ausgabe zeigt die Ausgabe vom Methodenaufruf von Zeile 38. Da der Ubergebener

45 Parameter eine Referenz auf ein Objekt vom Typ String beinhaltet und somit weder

vom Typ Class1 noch vom Typ Class?2 ist, ist kein Statemend (Zeile 12, 18) gultig
und das Programm verzweigt zu Zeile 24.

Umwandlungsmethoden

Far die Umwandlung von Type ist die Klasse System.Convert zustandig. Sie bietet folgende
Umwandlungsfunktionen an:

ToBoolean() [Tolnt32()

ToByte() Tolnt64()

ToChar() ToSByte()
ToDateTime()|ToSingle()
ToBoolean() |[ToString()
ToDate() ToUInt16()
ToDecimal() |ToUInt32()
ToDouble() [ToUInt64()
Tolnt16()

Die Umwandlung eines Strings in einen anderen Zahlendatentyp, z.B. int doer double, funktioniert
auch uber die von den numerischen Typen zur Verflgung gestellte Methode Parse() bzw. TryParse()
(ab .NET 2.0). Diese Mehtoden existieren in Form von mehreren Uberladenen Methoden und erledigen
die Umwandlung von Strings in die gewlnschte numerischen Typen.

Ein Vorteil von Parse() ist, dass zusatzich angegeben werden kann, wie die Zahlen formatiert sind
bzw. in welches Format sie vorliegen. Ausserdem interpretiert die Methode auch die
landerspezifischen Einstellungen des Betriebssystems.

Die Methode Parse ibt false zurtick, wenn die Konvertierung fehlschlagt und wirft KEINE
Exceptions.

Boxing und Unboxing

Wertetypen kénnen bei Bedarf automatisch in Referenztypen verwandelt werden. Damit das sauber

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last
update:

2018/10/03 start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567828

13:57

funktioniert, stellt C# die Funktionalitat Boxing und Unboxing zur Verfigung.

Boxing (Objekt vom Stack zum
Heap verschieben und eine
Referenz auf das Objekt legen.)

Wenn ein Wertetyp als Referenztyp verwendet werden soll,
werden die enthaltenen Daten ,verpackt”. C# benutzt daflr den
Datentyp object, der bekanntlich die Basisklasse aller Datentypen
darstellt, das bedeutet auch: jeder Datentyp aufnehmen kann.
Object merkt sich, welcher Art von Daten in ihm gespeichert wurde,
damit auch die Rickwndlung maglich ist.

Unboxing (Objekt vom Heap
zum Stack verschieben.)

Ein Referenztyp wird in einen Wertetyp verwandelt.

1. Using System

2.

3. public class TestClass

4.

5. public static void Main

6

7 int i

8. object obj

9. obj=i; // Boxing!!

10. Console.WriteLine("Wert ist {0}." obj

11.

12.
Ausgabe:
Wert ist

Ein Beispiel fur Unboxing:

1. using System

2.

3. public class TestClass

4.

5. public static void Main

6

7 int 1

8. object obj

9. obj=1i; // Boxing !!
10. Console.WriteLine("Wert ist {0}.", obj
11.
12. // Rickkonvertierung
13. byte b=(byte) ((int)obj // Unboxing funktioniert!!
14. Console.WritelLine("Byte-Werte: {0}.", b
15.
16.

https://jmz-elektronik.ch/dokuwiki/

Printed on 2026/01/18 02:38

2026/01/18 02:38 39/48 Ubersicht und Versionen

Ausgabe:

Werte ist
Byte-Wert

Damit ist auch bewiesen, dass sich das Objekt merkt, was flr ein Typ es gespeichert hat, deshalb ist
bei Umboxing erst ein Casting zu int nétig.

Normalerweise Ublassen Sie Boxing und Unboxing dem Compiler. Es soll aber nach Méglichkeit
vermieden werden, da es einen nicht unerheblichen Laufzeitaufwand generiert.

Strings

Der Datentyp String ist universell einsetzbar.

Obwohl die Dekleration wie bei einem Wertetyp aussieht, handelt es sich bei einem string um einen
Referenztypen.

Ein String ist bezlglich der Grdsse dynamisch. Das heisst, er nimmt sich vom Heap so viel Speicher,
wie er gerade braucht. Strings in .NET sind immer Unicode, d.h. 16Bit gross. Mit Hilfe der
2715(65535) darstellbaren Zeichen kénnen alle Zeichen dieser Welt und einige Sonnderzeichen
dargestellt werden. Wenn man es genau betrachtet, ist sogar noch ca. 1/3 Reserve verflgbar.

Stringzuweisungen
Direkte Zuweisung:

. string myString "Hallo Welt"; // Zuweise bei der Deklaration oder...

1

2.

3. string myString

4. myString="Hallo Welt"; //... nach der Deklaration.

Zuweisen Uber die Copy()-Methode:

1. string myStringl "JMZ Solution"
2. string myString2 String.Copy(myStringl);// Inhalt von myStringl wird
nach myString2 kopiert

oder Uber die Verwendung des Teilstring Befehls Substring():

1. string myStringl "IJMZ Solution"
2. string myString2 = myStringl.Substring

Zuweisung mit Hilfe von Escape-Sequenzen:

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last
update:
2018/10/03
13:57

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567828

1. string myString = "Dieser Text hat \"Ausfuhrungszeichen\"."

Die Ausgabe ware hier:
Dieser Text hat "Ausfuhrungszeichen".
Manchmal mdchte man die Bearbeitung von Escape-Sequenzen auch unterbinden. Typischerweise bei

der Behandlung von Pfadangaben. Um den Backshlash ,\“, der ja auch die Position einer Escape-
Sequenz angibt, in einem String zu schreiben, musste man wie folgt formulieren:

1. string myString "d:\\meinlaufwerk\\ordner\\datei.doc"

Bei der Eingabe von ,@"“ vor dem String wird die Bearbeitung von Escape-Sequenzen im
nachfolgenden String verhindert:

1. string myString = @"d:\meinlaufwerk\ordner\datei.doc"

Zugriff auf String
Ein Beispiel:
1. using System
2. class TestClass
3.
4, public static void Main
5.
6. string myStr "Hallo Welt."
7. string xStr = string.Empty
8.
9. int i i<myStr.Length; i
10.
11. string x = myStr[i|/.ToString
12. X "e"
13. xStr X
14.
15.
16. Console.WritelLine(xStr
17.
18.

Wir sehen in diesem Beispiel, wie auch Operatoren, hier +=, auf Strings angewendet werden kdnnen.

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:38

2026/01/18 02:38 41/48 Ubersicht und Versionen

Thema Typensicherheit: string und char kdnnen nicht gemischt werden, obwohl es sich bei
einem string um eine Aneinanderkettung von chars handelt.

Strings sind nicht veranderbar (immutable). Das bedeutet, dass bei jeder Stringfunktion ein neues
Objekt angelegt wird. Sogar ein Leerstring ,,,, ist ein eigenes Objekt. Aus grinden der Performance
soll deshalb fur Leerstrings das vordefinierte Objekt string.Empty aus der Klasse string verwendet
werden. Haufig muss gepruft werden, ob ein String null oder leer ist. Dazu stehen die Methoden
IsNullOrEmpty zu Verfligung:

1. string.IsNullOrEmpty (myStr

.NET 4 hat eine weitere Methode mit demselben Zweck:

1. string.IsNullOrWhitespace(myStr

Studieren Sie in der Online-Hilfe die Methoden, die string zur Verfugung stellt.

Formatierung von Daten

Standardformate
Selbstdefinierte Formate

Ausrichtung

Zusammenfassung

Ubungen Datenverwaltung

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:hinweis.png
https://jmz-elektronik.ch/dokuwiki/lib/exe/detail.php?id=start%3Avisualstudio2017%3Aprogrammieren%3Acsharp&media=start:visualstudio2017:programmieren:csharp:hinweis.png

Last
;gggﬁa/% start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567828

13:57

Ablaufsteuerung

Worum geht es?
Was lernen Sie uber dieses Kapitel?
Absolute Sprunge

Bedingungen und Verzweigungen

Vergleichs- und logische Operatoren
Die bedingte Zuwweisung

Die for-Schleife

Die while-Schleife

Die do-while-Schleife

Zusammenfassung
Kontrollfragen

Ubungen Programmablauf

Operatoren

Worum geht es?

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:38

2026/01/18 02:38 43/48

Ubersicht und Versionen

Was lernen Sie in desem Kapitel

Mathematische Operatoren

Grundrechnenarten
Zusammengesetzte Rechenoperatoren

Die Klasse Math

Zusammenfassung

Kontrollfragen

Erweiterte Datentypen

Worum geht es?
Was lernen Sie in diesem Kapitel?

Array

Eindimensionale Arrays
Mehrdimensionale Arrays
Ungleichformige Arrays
Arrays initialsieren

Die foreach-Schleife

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last
update:
2018/10/03
13:57

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567828

Struct

Aufzahlungen

Standard-Aufzahlungen

Flag Enums

Zusammenfassung
Kontrollfragen

Ubungen Array

Vererbung und Interfaces

Worum geht es?
Was lernen Sie in diesem Kapitel

Vererbung von Klassen

Zugriff auf Elemente der Basisklasse
Uberschreiben von Methonden

Aufruf des Konstruktors der Basisklasse
Abstrakte Klassen

Versiegelte Klassen

https://jmz-elektronik.ch/dokuwiki/

Printed on 2026/01/18 02:38

2026/01/18 02:38 45/48 Ubersicht und Versionen

Verbergen von Methoden

Interface

Explizite Interfaces
Zusammenfassung
Kontrollfragen

Ubungen

Eigenschaften und Indexer

Worum geht es?

Was lernen Sie in diesem Kapitel?
Eigenschaften (Properties)
Erweiterungen der Properties
Indexer

Zusammenfassung

Kontrollfragen

Ubungen

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

Last
update:
2018/10/03
13:57

Strukturierte Fehlerbehandlung

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567828

Worum geht es?

Was lernen Sie in diesem Kapitel?
Was sind Exceptions?

Exception abfangen

Exception auslosen
Anwendungstipps
Zusammenfassen

Kontrollfragen

Anhang

Erweiterung C#

Initialisierer fur Auto-Properties, read-only Auto-Properties
Verwendung statischer Klassen

Exception Filter

Null-conditional-Operator

Expression bodied Member

https://jmz-elektronik.ch/dokuwiki/ Printed on 2026/01/18 02:38

2026/01/18 02:38 47/48

Ubersicht und Versionen

Initialisierung von Collections
String Interpolation

nameof Operator

Literatur

Fussnoten

Paar Link zum Start:

Threading in C#

Albahari.com

Microsoft Dev Center -> XAML in WPF

WPF Architektur & Programmbeispiele

1) 7)) 22)

’ ’

Common Language Runtime
2)

1980 Microsoft Disk Operating System

3)

1985 Windows 1.0

4)

1990 Windows 3.0

5)

1995 Windows 95

6)

Crossplatform Mono, Mobile, Linux
8)

Reference Counting fur Objekte
9) 28) 29) 30) 31) 32) 33)

’ ’ ’ ’ ’ ’

Garbage Collection
10)

Active Data Objects

11)

Extensible Markup Language
12)

Input Output

13)

Active Server Pages
14)

Simple Object Access Protocol
15)

ASP.NET Application Services

Blcher & Dokumente - https://jmz-elektronik.ch/dokuwiki/

http://www.albahari.com/threading/part3.aspx
http://www.albahari.com
https://code.msdn.microsoft.com/windowsapps/site/search?f%5B0%5D.Type=Technology&f%5B0%5D.Value=XAML
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/wpf-architecture
https://en.wikipedia.org/wiki/MS-DOS
https://en.wikipedia.org/wiki/Windows_1.0
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Windows_95
https://www.mono-project.com/
https://en.wikipedia.org/wiki/SOAP
https://en.wikipedia.org/wiki/ASP.NET

Last
update:
2018/10/03
13:57

start:visualstudio2017:programmieren:csharp https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567828

16)

Windows Foundation Class
17)

WPF = Windows Presentation Foundation
18)

Extensible Application Markup Language

19)

Windows Communication Foundation
20)

Service-Oriented Applications/Architecture
21)

Common Intermediate Language
23)

Micro Framework
24)

Mono
25)

Windwos CE

26)

Common lintermediate Language
27)

Application Programming Interface
34)

Garbage Collector
35) 36)

’

Implizite Konvertierung
37) 38)

’

Explizite Konvertierung

From:
https://jmz-elektronik.ch/dokuwiki/ - Bicher & Dokumente

Permanent link:

https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567828

Last update: 2018/10/03 13:57

https://jmz-elektronik.ch/dokuwiki/

Printed on 2026/01/18 02:38

https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/wpf-architecture
https://en.wikipedia.org/wiki/Windows_Communication_Foundation
https://en.wikipedia.org/wiki/Service-oriented_architecture
https://en.wikipedia.org/wiki/.NET_Micro_Framework
https://en.wikipedia.org/wiki/Mono_(software)
https://en.wikipedia.org/wiki/Windows_Embedded_Compact
https://en.wikipedia.org/wiki/Common_Intermediate_Language
https://en.wikipedia.org/wiki/Application_programming_interface
https://jmz-elektronik.ch/dokuwiki/
https://jmz-elektronik.ch/dokuwiki/doku.php?id=start:visualstudio2017:programmieren:csharp&rev=1538567828

	Inhaltsverzeichnis
	Übersicht und Versionen
	Erklärungen zu den Symbolen

	Einführung
	Kurzübersicht
	Ihr Nutzen
	Zielpublikum
	Voraussetzung

	C# und .NET
	Worum geht es?
	Was lernen Sie in diesem Kapitel?
	Was ist .NET?
	Ein neue Welt für .NET
	Ein Beispiel eines CIL Codes
	Die APIs des .NET Standard 2.0

	Erste Schritte im C#
	Worum geht es?
	Was lernen Sie in diesem Kapitel?
	Hello World
	Zusammenfassung
	Kontrollfragen

	Klassen und Objekte
	Worum geht es?
	Was lernen Sie in diesem Kapitel?
	Einführung
	Begriffe
	Deklaration von Klassen
	Erzeugen von Instanzen einer Klasse

	Felder einer Klasse
	Modifikatoren
	Variable und Felder
	this
	Deklaration von Konstanten

	Methoden einer Klasse
	Parameterübergabe
	Optionale Parameter
	Überladen von Methoden

	Statische Methoden / Variablen
	Zugriff auf statische Methoden und Variablen
	Statische Klasse

	Initialisierung
	Konstruktoren
	Destruktoren / Finalizer

	Namensräume
	Verwenden von Namensräumen
	Der globale Namensraum

	Zusammenfassung
	Kontrollfragen
	Übung Klasse und Objekte

	Grundlagen Datentypen
	Worum geht es?
	Was lernen Sie in diesem Kapitel
	Datentypen
	Speicherverwaltung
	Die Null-Referenz
	Nullbare Typen
	Garbage Collection
	Standard-Datentypen von C#
	Methoden von Datentypen
	Type und typeof()

	Typkonvertierung
	Das as-Operator
	Der is-Operator
	Umwandlungsmethoden

	Boxing und Unboxing
	Strings
	Stringzuweisungen
	Zugriff auf String

	Formatierung von Daten
	Standardformate
	Selbstdefinierte Formate
	Ausrichtung

	Zusammenfassung
	Übungen Datenverwaltung

	Ablaufsteuerung
	Worum geht es?
	Was lernen Sie über dieses Kapitel?
	Absolute Sprünge
	Bedingungen und Verzweigungen
	Vergleichs- und logische Operatoren
	Die bedingte Zuwweisung
	Die for-Schleife
	Die while-Schleife
	Die do-while-Schleife

	Zusammenfassung
	Kontrollfragen
	Übungen Programmablauf

	Operatoren
	Worum geht es?
	Was lernen Sie in desem Kapitel
	Mathematische Operatoren
	Grundrechnenarten
	Zusammengesetzte Rechenoperatoren
	Die Klasse Math

	Zusammenfassung
	Kontrollfragen

	Erweiterte Datentypen
	Worum geht es?
	Was lernen Sie in diesem Kapitel?
	Array
	Eindimensionale Arrays
	Mehrdimensionale Arrays
	Ungleichförmige Arrays
	Arrays initialsieren
	Die foreach-Schleife

	Struct
	Aufzählungen
	Standard-Aufzählungen
	Flag Enums

	Zusammenfassung
	Kontrollfragen
	Übungen Array

	Vererbung und Interfaces
	Worum geht es?
	Was lernen Sie in diesem Kapitel
	Vererbung von Klassen
	Zugriff auf Elemente der Basisklasse
	Überschreiben von Methonden
	Aufruf des Konstruktors der Basisklasse
	Abstrakte Klassen
	Versiegelte Klassen
	Verbergen von Methoden

	Interface
	Explizite Interfaces
	Zusammenfassung
	Kontrollfragen
	Übungen

	Eigenschaften und Indexer
	Worum geht es?
	Was lernen Sie in diesem Kapitel?
	Eigenschaften (Properties)
	Erweiterungen der Properties
	Indexer
	Zusammenfassung
	Kontrollfragen
	Übungen

	Strukturierte Fehlerbehandlung
	Worum geht es?
	Was lernen Sie in diesem Kapitel?
	Was sind Exceptions?
	Exception abfangen
	Exception auslösen
	Anwendungstipps
	Zusammenfassen
	Kontrollfragen

	Anhang
	Erweiterung C#
	Initialisierer für Auto-Properties, read-only Auto-Properties
	Verwendung statischer Klassen
	Exception Filter
	Null-conditional-Operator
	Expression bodied Member
	Initialisierung von Collections
	String Interpolation
	nameof Operator

	Literatur

	Fussnoten

